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1 Introduction

Symbolic summation in difference fields has been introduced byKarr’s groundbreak-
ing work [12, 13]. He defined the so-called ��-fields (F,σ) which are composed
by a field F and a field automorphism σ : F → F. Here the field F is built by a
tower of transcendental field extensions whose generators either represent sums or
products where the summands or multiplicands are elements from the field below.
In particular, the following problem has been solved: given such a ��-field (F,σ)

and given f ∈ F. Decide algorithmically, if there exists a g ∈ F with

f = σ(g) − g. (1)

Hence if f and g can be rephrased to expressions F(k) and G(k) in terms of
indefinite nested sums and products, one obtains the telescoping relation

F(k) = G(k + 1) − G(k). (2)

Then summing this telescoping equation over a valid range, say a � k � b, one
gets the identity

∑b
k=a F(k) = G(b + 1) − G(a).

In a nutshell, the following strategy can be applied: (I) construct an appropriate
��-field (F,σ) in which a given summand F(k) in terms of indefinite nested sums
and products is rephrased by f ∈ F; (II) compute g ∈ F such that (1) holds; (III)
rephrase g ∈ F to an expression G(k) such that (2) holds.

In the last years various new algorithms and improvements of Karr’s difference
field theory have been developed in order to obtain a fully automatic simplification
machinery for nested sums. Here the key observation is that a sum can be either
expressed in the existingdifferencefield (F,σ)by solving the telescopingproblem (2)
or it can be adjoined as a new extension on top of the already constructed field F;
see Theorem 2.1(3) below. By a careful construction of (F,σ) one can simplify sum
expressions such that the nesting depth is minimized [26], or the number [29] or the
degree [24] of the objects arising in the summands are optimized.

In contrast to sums, representing products in��-fields is not possible in general.
In particular, the alternating sign (−1)k , which arises frequently in applications, can
be represented properly only in a ring with zero divisors introducing relations such as
(1 − (−1)k)(1 + (−1)k) = 0. In [23] and a streamlined version worked out in [28],
this situation has been cured for the class of hypergeometric products of the form∏k

i=l f (i) with l ∈ N and f (k) ∈ Q(k) being a rational function with coefficient
from the rational numbers: namely, a finite number of such products can be always
represented in a ��-field adjoined with the element (−1)k . In particular, nested
sums defined over such products can be formulated automatically in difference rings
built by the so-called R��-extensions [30, 32]. This means in difference rings
that are built by transcendental ring extensions and algebraic ring extensions of
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the form αn where α is a primitive root of unity. Within this setting [30, 32], one
can then solve the telescoping problem for indefinite sums (see Eq. (1)) and more
generally the creative telescoping problem [19] to compute linear recurrences for
definite sums. Furthermore one can simplify the so-called d’Alembertian [3, 5, 11,
18] or Liouvillian solutions [20, 21] of linear recurrences which are given in terms
of nested sums defined over hypergeometric products. For many problems coming,
e.g., from combinatorics or particle physics (for the newest applications see [33]
or [1]) this difference ring machinery with more than 100 extension variables works
fine. But in more general cases, one is faced with nested sums defined not only
over hypergeometric but also over mixed multibasic products. Furthermore, these
products might not be expressible in Q but only in an algebraic number field, i.e., in
a finite algebraic field extension of Q.

In this article we will generalize the existing product algorithms [23, 28] to cover
also this more general class of products.

Definition 1.1 Let K = K (q1, . . . , qe) be a rational function field over a field
K and letF = K(x, t1, . . . , te) be a rational function field overK.

∏n
k=l f (k, q

k
1 , . . . ,

qk
e ) is a mixed (q1, . . . , qe)-multibasic hypergeometric product in n, if f (x,
t1, . . . , te) ∈ F \ {0} and l ∈ N is chosen big enough (see Example 2.9 below) such
that f (�, q�

1, . . . , q
�
e ) has no pole and is non-zero for all � ∈ N with � � l. If

f (t1, . . . , te) ∈ Fwhich is free of x , then
∏n

k=l f (q
k
1 , . . . , q

k
e ) is called a (q1, . . . , qe)-

multibasic hypergeometric product in n. If e = 1, then it is called a basic or q-
hypergeometric product in n where q = q1. If e = 0 and f ∈ K(x), then

∏n
k=l f (k)

is called a hypergeometric product in n. Finally, if f ∈ K, it is called constant or
geometric product in n.

Let qqqn denote qn
1 , . . . , q

n
e and ttt denote (t1, . . . , te). Further, we define the set

of ground expressions1 K(n) = { f (n) | f (x) ∈ K(x)}, K(qqqn) = { f (qqqn) | f (ttt) ∈
K(ttt)} and K(n,qqqn) = { f (n,qqqn) | f (x, ttt) ∈ K(x, ttt)}. Moreover, we define Prod(X)

with X ∈ {K, K(n), K(qqqn), K(n,qqqn)} as the set of all such products where the mul-
tiplicand is taken from X. Finally, we introduce the set of product expressions
ProdE(X) as the set of all elements

∑

(ν1,...,νm )∈S
a(ν1,...,νm )(n) P1(n)ν1 · · · Pm(n)νm (3)

with m ∈ N, S ⊆ Z
m finite, a(ν1,...,νm )(n) ∈ X and P1(n), . . . , Pm(n) ∈ Prod(X).

For this class where the subfield K of K itself can be a rational function field over
an algebraic number field, we will solve the following problem.

1Their elements are considered as expressions that can be evaluated for sufficiently large n ∈ N.
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Problem RPE: Representation of Product Expressions.

Let XK ∈ {K, K(n), K(qqqn), K(n,qqqn)}. Given P(n) ∈ ProdE(XK);
find Q(n) ∈ ProdE(XK′) with K

′ a finite algebraic field extensiona of K and a
natural number δ with the following properties:
1. P(n) = Q(n) for all n ∈ N with n � δ;
2. The product expressions in Q(n) (apart from products over roots of unity)

are algebraically independent among each other.
3. The zero-recognition property holds, i.e., P(n) = 0 holds for all n from a

certain point on if and only if Q(n) is the zero-expression.

aIf K = K (κ1, . . . ,κu)(q1, . . . , qe) is a rational function field over an algebraic number
field K , then in worst case K is extended to K

′ = K ′(κ1, . . . ,κu)(q1, . . . , qe) where K ′ is
an algebraic extension of K . Subsequently, all algebraic field extensions are finite.

Internally, the multiplicands of the products are factorized and the monic irre-
ducible factors, which are shift-equivalent, are rewritten in terms of one of these
factors; compare [2, 4, 8, 17, 23]. Then using results of [10, 27] we can conclude
that products defined over these irreducible factors can be rephrased as transcendental
difference ring extensions. Using similar strategies, one can treat the content coming
from the monic irreducible polynomials, and obtains finally an R��-extension in
which the products can be rephrased. We remark that the normal forms presented
in [8] are closely related to this representation and enable one to check, e.g., if the
given products are algebraically independent. Moreover, there is an algorithm [15]
that can compute all algebraic relations for c-finite sequences, i.e., it finds certain ide-
als from ProdE(K)whose elements evaluate to zero. Our main focus is different. We
will compute alternative products which are by construction algebraically indepen-
dent among each other and which enable one to express the given products in terms
of the algebraic independent products. In particular, wewill make this algebraic inde-
pendence statement (see property (2) of Problem RPE) very precise by embedding
the constructed R��-extension explicitly into the ring of sequences [19] by using
results from [32]. The derived algorithms implemented in Ocansey’s Mathematica
package NestedProducts supplement the summation package Sigma [25] and
enable one to formulate nested sums over such general products in the setting of
R��-extensions. As a consequence, it is now possible to apply completely auto-
matically the summation toolbox [4, 7, 12, 23–32] for simplification of indefinite
and definite nested sums defined over such products.

The outline of the article is as follows. In Sect. 2 we define the basic notions of
R��-extensions and present the main results to embed a difference ring built by
R��-extensions into the ring of sequences. In Sect. 3 our Problem RPE is reformu-
lated to Theorem 3.1 in terms of these notions, and the basic strategy is presented
how this problem will be tackled. In Sect. 4 the necessary properties of the constant
field are worked out that enable one to execute our proposed algorithms. Finally, in
Sects. 5 and 6 the hypergeometric case and afterwards the mixed multibasic case are
treated. A conclusion is given in Sect. 7.
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2 Ring of Sequences, Difference Rings and Difference
Fields

In this section, we discuss the algebraic setting of difference rings (resp. fields) and
the ring of sequences as they have been elaborated in [12, 30, 32]. In particular,
we demonstrate how sequences generated by expressions in ProdE(K(n)) (resp.
ProdE(K(n,qqqn))) can be modeled in this algebraic framework.

2.1 Difference Fields and Difference Rings

Adifference ring (resp. field) (A,σ) is a ring (resp. field)A together with a ring (resp.
field) automorphism σ : A → A. Subsequently, all rings (resp. fields) are commuta-
tive with unity; in addition they contain the set of rational numbers Q, as a subring
(resp. subfield). The multiplicative group of units of a ring (resp. field) A is denoted
by A

∗. A ring (resp. field) is computable if all of it’s operations are computable. A
difference ring (resp. field) (A,σ) is computable if A and σ are both computable.
Thus, given a computable difference ring (resp. field), one can decide if σ(c) = c.
The set of all such elements for a given difference ring (resp. field) denoted by

const(A,σ) = {c ∈ A | σ(c) = c}

forms a subring (resp. subfield) of A. In this article, const(A,σ) will always be a
field called the constant field of (A,σ). Note that it contains Q as a subfield. For any
difference ring (resp. field) we shall denote the constant field by K.

The construction of difference rings/fields will be accomplished by a tower of
difference ring/field extensions. A difference ring (Ã, σ̃) is said to be a difference
ring extension of a difference ring (A,σ) if A is a subring of Ã and for all a ∈ A,
σ̃(a) = σ(a) (i.e., σ̃|A = σ). The definition of a difference field extension is the same
by only replacing the word ring with field. In the following we do not distinguish
anymore between σ and σ̃.

In the following we will consider two types of product extensions. Let (A,σ) be a
difference ring (inwhich products have already been defined by previous extensions).
Let α ∈ A

∗ be a unit and consider the ring of Laurent polynomials A[t, t−1] (i.e., t is
transcendental overA). Then there is a unique difference ring extension (A[t, t−1],σ)

of (A,σ) with σ(t) = α t and σ(t−1) = α−1 t−1. The extension here is called a
product-extension (in short P-extension) and the generator is called a P-monomial.
Suppose that A is a field and A(t) is a rational function field (i.e., t is transcendental
over A). Let α ∈ A

∗. Then there is a unique difference field extension (A(t),σ) of
(A,σ)with σ(t) = α t . We call the extension a P-field extension and t a P-monomial.
In addition, we get the chain of extensions (A,σ) � (A[t, t−1],σ) � (A(t),σ).

Furthermore, we consider extensions whichmodel algebraic objects like ζk where
ζ is a λ-th root of unity for some λ ∈ N with λ > 1. Let (A,σ) be a difference ring
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and let ζ ∈ A
∗ be a primitive λ-th root of unity, (i.e., ζλ = 1 and λ is minimal).

Take the difference ring extension (A[y],σ) of (A,σ) with y being transcendental
over A and σ(y) = ζ y. Note that this construction is also unique. Consider the ideal
I := 〈

yλ − 1
〉
and the quotient ring E := A[y]/I . Since I is closed under σ and σ−1

i.e., I is a reflexive difference ideal, we have a ring automorphism σ : E → E defined
by σ(h + I ) = σ(h) + I . In other words, (E,σ) is a difference ring. Note that by
this construction the ring A can naturally be embedded into the ring E by identifying
a ∈ A with a + I ∈ E, i.e., a �→ a + I . Now set ϑ := y + I . Then (A[ϑ],σ) is a
difference ring extension of (A,σ) subject to the relations ϑλ = 1 and σ(ϑ) = ζ ϑ.
This extension is called an algebraic extension (in short A-extension) of order λ. The
generator, ϑ is called an A-monomial and we define λ = min{n > 0 | αn = 1} as its
order. Note that the A-monomial ϑ, with the relations ϑλ = 1 and σ(ϑ) = ζ ϑmodels
ζk with the relations (ζk)λ = 1 and ζk+1 = ζ ζk . In addition, the ring A[ϑ] is not an
integral domain (i.e., it has zero-divisors) since (ϑ − 1) (ϑλ−1 + · · · + ϑ + 1) = 0
but (ϑ − 1) �= 0 �= (ϑλ−1 + · · · + ϑ + 1).

We introduce the following notations for convenience. Let (E,σ) be a difference
ring extension of (A,σ) with t ∈ E. A〈t〉 denotes the ring of Laurent polynomials
A[t, 1

t ] (i.e., t is transcendental over A) if (A[t, 1
t ],σ) is a P-extension of (A,σ).

Lastly, A〈t〉 denotes the ring A[t] with t /∈ A but subject to the relation tλ = 1 if
(A[t],σ) is an A-extension of (A,σ) of order λ. We say that the difference ring
extension (A〈t〉,σ) of (A,σ) is an AP-extension (and t is an AP-monomial) if it is
an A- or a P-extension. Finally, we call (A〈t1〉 · · · 〈te〉,σ) a (nested) AP-extension/P-
extension of A,σ if it is built by a tower of such extensions.

Throughout this article, we will restrict ourselves to the following classes of
extensions as our base field.

Example 2.1 LetK(x) be a rational function field and define the field automorphism
σ : K(x) → K(x) with σ( f ) = f |x �→ x+1. We call (K(x),σ) the rational difference
field over K.

Example 2.2 Let K = K (q1, . . . , qe) be a rational function field (i.e., the qi are
transcendental among each other over the field K and let (K(x),σ) be the ratio-
nal difference field over K. Consider a P-extension (E,σ) of (K(x),σ) with
E = K(x)[t1, 1

t1
] · · · [te, 1

te
] and σ(ti ) = qi ti for 1 � i � e. Now consider the field

of fractions F = Q(E) = K(x)(t1) · · · (te). We also use the shortcut ttt = (t1, . . . , te)
andwriteF = K(x)(ttt) = K(x, ttt). Then (F,σ) is a P-field extension of the difference
field (K(x),σ). It is also called the mixed qqq-multibasic difference field over K. If
F = K(t1) · · · (te) = K(ttt) which is free of x , then (F,σ) is called the qqq-multibasic
difference field over K. Finally, if e = 1, then F = K(t1) and (F,σ) is called a q- or
a basic difference field over K.

Based on these ground fields we will define now our products. In the first sections
we will restrict to the hypergeometric case.

Example 2.3 Let K = Q
(
ι, (−1)

1
6
)
and let (K(x),σ) be a rational difference field.

Then the product expressions
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n∏

k=1

(−1)
1
6 ,

n∏

k=1

(−1)
1
2 (4)

from Prod(K(n)) can be represented in an A-extension as follows. Here ι is the com-
plex unit which we also write as (−1)

1
2 . Now take the A-extension (K(x)[ϑ1],σ)

of (K(x),σ) with σ(ϑ1) = (−1)
1
6 ϑ1 of order 12. The A-monomial ϑ1 models

(
(−1)

1
6
)n

with the shift-behavior Sn
(
(−1)

1
6
)n = (

(−1)
1
6
)n+1 = (−1)

1
6
(
(−1)

1
6
)n

.

Further, (K(x)[ϑ1][ϑ2],σ) is also anA-extension of (K(x)[ϑ1],σ)withσ(ϑ2) = ι ϑ2

of order 4. The generator ϑ2 models (ι)n with Sn(ι)n = ι (ι)n .

Example 2.4 The product expressions

n∏

k=1

√
13,

n∏

k=1

7,
n∏

k=1

169 (5)

from Prod(K(n)) with K = Q(
√
13) are represented in a P-extension of the rational

difference field (K(x),σ) with σ(x) = x + 1 as follows.

1. Consider the P-extension (A1,σ) of (K(x),σ)withA1 = K(x)[y1, 1
y1

], σ(y1) =
(
√
13) y1 andσ( 1

y1
) = 1√

13
1
y1
. In this ring, we canmodel polynomial expressions

in
(√

13
)n

and
(√

13
)−n

with the shift behavior Sn
(√

13
)n = √

13
(√

13
)n

and
Sn

1
(
√
13)n

= 1√
13

1
(
√
13)n

. Here,
(√

13
)n

and 1
(
√
13)n

are rephrased by y1 and 1
y1
,

respectively.
2. Constructing the P-extension (A2,σ) of (A1,σ) with A2 = A1[y2, 1

y2
], σ(y2) =

7 y2 and σ( 1
y2

) = 1
7

1
y2
, we are able to model polynomial expressions in 7n and

7−n with the shift behavior Sn7n = 7 7n and Sn
1
7n = 1

7
1
7n by rephrasing 7n and

1
7n with y2 and 1

y2
, respectively.

3. Introducing the P-extension (A3,σ) of (A2,σ) with A3 = A2[y3, 1
y3

], σ(y3) =
169 y3 and σ( 1

y3
) = 1

169
1
y3
, one can model polynomial expressions in (169)n and

(169)−n with the shift behavior Sn(169)
n = 169 (169)n and Sn 1

(169)n = 1
169

1
(169)n

by rephrasing (169)n and (169)−n by y3 and 1
y3
, respectively.

Example 2.5 The hypergeometric product expressions

P1(n) =
n∏

k=1

k, P2(n) =
n∏

k=1

(
k + 2

)
(6)

from Prod(Q(n)) can be represented in a P-extension defined over the rational dif-
ference field (Q(x),σ) in the following way. Take the P-extension (Q(x)[z1, 1

z1
],σ)

of (Q(x),σ) with σ(z1) = (x + 1) z1 and σ( 1
z1

) = 1
(x+1)

1
z1
. In this extension, one

can model polynomial expressions in the product expression P1(n) with the shift
behavior Sn P1(n) = (n + 1) P1(n) and Sn

1
P1(n)

= 1
(n+1)

1
P1(n)

by rephrasing P1(n)
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and 1
P1(n)

by z1 and 1
z1
. Finally, taking the P-extension (Q(x)[z1, 1

z1
][z2, 1

z2
],σ) of

(Q(x)[z1, 1
z1

],σ) with σ(z2) = (x + 3) z2 and σ( 1
z2

) = 1
(x+3)

1
z2
, we can represent

polynomial expressions in the product expression P2(n) with the shift-behavior
Sn P2(n) = (n + 3) P2(n) and Sn

1
P2(n)

= 1
(n+3)

1
P2(n)

by rephrasing P2(n) and 1
P2(n)

by z2 and 1
z2
, respectively.

In this article we will focus on the subclass of R�-extensions.

Definition 2.1 An AP-extension (A- or P-extension) (A〈t1〉 · · · 〈te〉,σ) of (A,σ)

is called an R�-extension (R- or �-extension) if const(A〈t1〉 · · · 〈te〉,σ) = const
(A,σ). Depending on the type of extension, we call ti an R-/�-/R�-monomial.
Similarly, letA be a field. Thenwe call a tower of P-field extensions (A(t1) · · · (te),σ)

of (A,σ) a �-field extension if const(A(t1) · · · (te),σ) = const(A,σ).

We concentrate mainly on product extensions and skip the sum part that has been
mentioned in the introduction. Still, we need to handle the very special case of
the rational difference field (K(x),σ) with σ(x) = x + 1 or the mixed qqq-multibasic
version. Thus it will be convenient to introduce also the field version of�-extensions
[12, 22].

Definition 2.2 Let (F(t),σ) be a difference field extension of (F,σ)with t transcen-
dental over F and σ(t) = t + β with β ∈ F. This extension is called a�-extension if
const(F(t),σ) = const(F,σ). In this case t is also called a�-monomial. (F(t),σ) is
called a��-extension of (F,σ) if it is either a�- or a�-extension. I.e., t is transcen-
dental over F, const(F(t),σ) = const(F,σ) and t is a �-monomial (σ(t) = α t for
someα ∈ F

∗) or t is a�-monomial (σ(t) = t + β for someβ ∈ F). (F(t1) · · · (te),σ)

is a ��-extension of (F,σ) if it is a tower of ��-extensions.

Note that there exist criteria which can assist in the task to check if during the
construction the constants remain unchanged. The reader should see [30, Proof 3.16,
3.22 and 3.9] for the proofs. For the field version, see also [12].

Theorem 2.1 Let (A,σ) be a difference ring. Then the following statements hold.

1. Let (A[t, 1
t ],σ) be a P-extension of (A,σ) with σ(t) = α t where α ∈ A

∗. Then
this is a �-extension (i.e., const(A[t, 1

t ],σ) = const(A,σ)) iff there are no g ∈
A \ {0} and v ∈ Z \ {0} with σ(g) = αv g.

2. Let (A[ϑ],σ) be an A-extension of (A,σ) of order λ > 1 with σ(ϑ) = ζ ϑ
where ζ ∈ A

∗. Then this is an R-extension (i.e., const(A[ϑ],σ) = const(A,σ))
iff there are no g ∈ A \ {0} and v ∈ {1, . . . ,λ − 1} with σ(g) = ζv g. If it is an
R-extension, α is a primitive λth root of unity.

3. Let A be a field and let (A(t),σ) be a difference field extension of (F,σ) with t
transcendental over F and σ(t) = t + β with β ∈ F. Then this is a �-extension
(i.e., const(F(t),σ) = const(F,σ)) if there is no g ∈ F with σ(g) = g + β.

Concerning our base case difference fields (see Examples 2.1 and 2.2) the
following remarks are relevant. The rational difference field (K(x),σ) is a �-
extension of (K,σ) by part (3) of Theorem 2.1 and using the fact that there is no
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g ∈ K with σ(g) = g + 1. Thus const(K(x),σ) = const(K,σ) = K. Furthermore,
the mixed qqq-multibasic difference field (F,σ)with F = K(x)(t1) · · · (te) is a�-field
extension of (K(x),σ). See Corollary 5.1 below. As a consequence, we have that
const(F,σ) = const(K(x),σ) = K.

We give further examples and non-examples of R�-extensions.

Example 2.6 1. In Example 2.3, the A-extension (K(x)[ϑ1],σ) is an R-extension
of (K(x),σ) of order 12 since there are no g ∈ K(x)∗ and v ∈ {1, . . . , 11}
with σ(g) = (

(−1)
1
6
)v
g. However, the A-extension (K(x)[ϑ1][ϑ2],σ) is not

an R-extension of (K(x)[ϑ1],σ) since with g = ϑ3
1 ∈ K(x)[ϑ1] and v = 1, we

have σ(g) = ι g. In particular, we get c = ϑ3
1 ϑ2 ∈ const(K(x)[ϑ1][ϑ2],σ) \

const(K(x)[ϑ1],σ).
2. The P-extension (A1,σ) of (K(x),σ) in Example 2.4(1) with σ(y1) = √

13 y1
is a �-extension of (K(x),σ) as there are no g ∈ K(x)∗ and v ∈ Z \ {0} with
σ(g) = (√

13
)v
g. Similarly, the P-extension (A2,σ) in Example 2.4(2) with

σ(y2) = 7 y2 is also a �-extension of (A1,σ) since there does not exist a
g ∈ A1 \ {0} and a v ∈ Z \ {0} with σ(g) = 7v g. However, the P-extension
(A3,σ) in part (3) of Example 2.4 is not a �-extension of (A2,σ) since with
g = y41 ∈ A2 we have σ(g) = (169) g. In particular, w = y−4

1 y3 ∈ const
(K(x)[y1, 1

y1
][y2, 1

y2
][y3, 1

y3
],σ) \ const(K(x)[y1, 1

y1
][y2, 1

y2
],σ).

3. Finally, in Example 2.5 the P-extension (Q(x)[z1, 1
z1

],σ) is a �-extension of
(Q(x),σ) with σ(z1) = (x + 1) z1 since there are no g ∈ Q(x)∗ and v ∈ Z \
{0} with σ(g) = (x + 1)v g. But the P-extension (Q(x)[z1, 1

z1
][z2, 1

z2
],σ) with

σ(z2) = (x + 3) z2 is not a �-extension of (Q(x)[z1, 1
z1

],σ) since with g =
(x + 2) (x + 1) z1 and v = 1 we have σ(g) = (x + 3) g. In particular, we get
c = g

z2
∈ const(Q(x) 〈z1〉 〈z2〉,σ) \ const(Q(x) 〈z1〉,σ).

We remark that in [12, 30] algorithms have been developed that can carry out
these checks if the already designed difference ring is built by properly chosen R�-
extensions. In this article we are more ambitious. We will construct AP-extensions
carefully such that they are automatically R�-extensions and such that the products
under consideration can be rephrased within these extensions straightforwardly. In
this regard, we will utilize the following lemma.

Lemma 2.1 Let (F,σ) be a ��-extension of (K,σ) with const(K,σ) = K. Then
the A-extension (F[ϑ],σ) of (F,σ) with order λ > 1 is an R-extension.

Proof By [13, Lemma 3.5] we have const(F,σk) = const(F,σ) for all k ∈ N \ {0}.
Thus with [32, Proposition 2.20], (F[ϑ],σ) is an R-extension of (F,σ).
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2.2 Ring of Sequences

We will elaborate how R�-extensions can be embedded into the difference ring of
sequences [32]; compare also [21]. Precisely this feature will enable us to handle
condition (2) of Problem RPE.

LetK be a field containingQ as a subfield and letN be the set of non-negative inte-
gers. We denote by K

N the set of all sequences
〈
a(n)

〉
n�0 = 〈a(0), a(1), a(2), · · · 〉

whose terms are in K. With component-wise addition and multiplication, KN forms
a commutative ring. The field K can be naturally embedded into K

N as a subring,
by identifying c ∈ K with the constant sequence 〈c, c, c, . . . 〉 ∈ K

N. Following the
construction in [19, Sect. 8.2], we turn the shift operator

S :
{

K
N → K

N

〈a(0), a(1), a(2), . . . 〉 �→ 〈a(1), a(2), a(3), . . . 〉

into a ring automorphism by introducing an equivalence relation ∼ on sequences
in K

N. Two sequences aaa := 〈
a(n)

〉
n�0 and bbb := 〈

b(n)
〉
n�0 are said to be equivalent

if and only if there exist a natural number δ such that a(n) = b(n) for all n � δ.
The set of equivalence classes form a ring again with component-wise addition
and multiplication which we will denote by S (K). For simplicity, we denote the
elements ofS (K) (also called germs) by the usual sequence notation as above. Now
it is obvious that S : S (K) → S (K) is a ring automorphism. Therefore, (S (K), S)

forms a difference ring called the (difference) ring of sequences (over K).

Example 2.7 The hypergeom. products in (4), (5) and (6) yield the sequencesM ={〈(
(−1)

1
6
)n 〉

n�0,
〈
ιn

〉
n�0,

〈(√
13

)n 〉
n�0,

〈
7n

〉
n�0,

〈
(169)n

〉
n�0, 〈P1(n)〉n�0,

〈P2(n)〉n�0
}
with S

〈
an

〉
n�0 := 〈

Sn an
〉
n�0 for an ∈ M .

Definition 2.3 Let (A,σ) and (A′,σ′) be two difference rings. We say that τ : A →
A

′ is adifference ringhomomorphism between the difference rings (A,σ) and (A′,σ′)
if τ is a ring homomorphism and for all f ∈ A, τ (σ( f )) = σ′(τ ( f )). If τ is injective,
then it is called a difference ringmonomorphism or a difference ring embedding. Con-
sequently, (τ (A),σ) is a sub-difference ring of (A′,σ′) where (A,σ) and (τ (A),σ)

are the same up to renaming with respect to τ . If τ is a bijection, then it is a difference
ring isomorphism and we say (A,σ) and (A′,σ′) are isomorphic.

Let (A,σ) be a difference ring with constant field K. A difference ring homo-
morphism (resp. monomorphism) τ : A → S (K) is calledK-homomorphism (resp.
-monomorphism) if for all c ∈ K we have that τ (c) = ccc := 〈c, c, c, . . . 〉.

The following lemma is the key tool to embed difference rings constructed by
R�-extensions into the ring of sequences.
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Lemma 2.2 Let (A,σ) be a difference ring with constant field K. Then:

1. The map τ : A → S (K) is a K-homomorphism if and only if there is a map
ev : A × N → K with τ ( f ) = 〈ev( f, 0), ev( f, 1), . . .〉 for all f ∈ A satisfying
the following properties:

a. for all c ∈ K, there is a natural number δ � 0 such that

∀ n � δ : ev(c, n) = c;

b. for all f, g ∈ A there is a natural number δ � 0 such that

∀ n � δ : ev( f g, n) = ev( f, n) ev(g, n),

∀ n � δ : ev( f + g, n) = ev( f, n) + ev(g, n);

c. for all f ∈ A and i ∈ Z, there is a natural number δ � 0 such that

∀ n � δ : ev(σi ( f ), n) = ev( f, n + i).

2. Let (A〈t〉,σ) be an AP-extension of (A,σ) with σ(t) = α t and suppose that
τ : A → S (K) as given in part (1) is a K-homomorphism.
Take some big enough δ ∈ N such that ev(α, n) �= 0 for all n � δ. Further, take
u ∈ K

∗; if tλ = 1 for someλ > 1, we further assume that uλ = 1 holds. Consider
the map τ ′ : A〈t〉 → S (K) with τ ( f ) = 〈ev( f, n)〉n�0 where the evaluation
function ev′ : A〈t〉 × N → K is defined by

ev′(
∑

i

hi t
i , n) =

∑

i

ev(hi , n) ev′(t, n)i

with

ev′(t, n) = u
n∏

k=δ

ev(α, k − 1).

Then τ is a K-homomorphism.
3. If (A,σ) is a field and (E,σ) is a (nested) R�-extension of (A,σ), then any

K-homomorphism τ : E → S (K) is injective.

Proof 1. The proof follows by [22, Lemma 2.5.1].
2. The proof follows by [32, Lemma 5.4(1)].
3. By [32, Theorem 3.3], (E,σ) is simple that is, any ideal of E which is closed

under σ is either E or {0}. Thus by [32, Lemma 5.8] τ ′ is injective. �

In this article, we will apply part (2) of Lemma 2.2 iteratively. As base case,
we will use the following difference fields that can be embedded into the ring of
sequences.
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Example 2.8 Take the rational difference field (K(x),σ) over K defined in Exam-
ple 2.1 and consider the map τ : K(x) → S (K) defined by τ ( ab ) = 〈ev (

a
b , n

))〉n�0

with a, b ∈ K[x] where

ev
(
a
b , n

) :=
{
0, if b(n) = 0
a(n)

b(n)
, if b(n) �= 0.

(7)

Then by Lemma 2.2(1) it follows that τ : K(x) → S (K) is a K-homomorphism.
We can define the function:

Z(p) = max
({k ∈ N | p(k) = 0}) + 1 for any p ∈ K[x] (8)

with max(∅) = −1. Now let f = a
b ∈ K(x) where a, b ∈ K[x], b �= 0. Since a(x),

b(x) have only finitely many roots, it follows that τ ( ab ) = 000 if and only if a
b = 0.

Hence ker(τ ) = {0} and thus τ is injective. Summarizing, we have constructed a
K-embedding, τ : K(x) → S (K) where the difference field (K(x),σ) is identi-
fied in the difference ring of K-sequences (S (K), S) as the sub-difference ring
of K-sequences (τ (K(x)), S). We call (τ (K(x)), S) the difference field of rational
sequences.

Example 2.9 Take the mixed qqq-multibasic difference field (F,σ) with F = K(x, ttt)
defined in Example 2.2. Then, τ : F → S (K) defined by τ ( ab ) = 〈ev (

a
b , n

)〉
n�0 for

a, b ∈ K[x, ttt] with

ev
(
a
b , n

) :=
{
0, if b(n,qqqn) = 0
a(n,qqqn)

b(n,qqqn)
, if b(n, qqqn) �= 0

(9)

is a K-homomorphism. We define the function

Z(p) = max
({k ∈ N | p(k,qqqk) = 0}) + 1 for any p ∈ K[x, ttt] (10)

with max(∅) = −1. We will use the fact that this set of zeros is finite if p �= 0 and
that Z(p) can be computed; see [6, Sect. 3.2]. For any rational function, f = g

h ∈ F

with g, h ∈ K[x, ttt] where h �= 0 and g, h are co-prime, let δ = max({Z(g), Z(h)}).
Then f (n) �= 0 for all n � δ. On the other hand, τ (

g
h ) = 000 if and only if g

h = 0.
Hence ker(τ ) = {0} and thus τ is injective. In summary, we have constructed
a K-embedding τ : F → S (K) where the difference field (F,σ) is identified in
(S (K), S) as (τ (F), S) which we call the difference field of mixed qqq-multibasic
rational sequences.
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3 Main Result

We shall solve Problem RPE algorithmically by proving the following main result
in Theorem 3.1. Here the specialization e = 0 covers the hypergeometric case. Sim-
ilarly, taking qqq-multibasic hypergeometric products in (11) and suppressing x yield
the multibasic case. Further, setting e = 1 provides the q-hypergeometric case.

Theorem 3.1 Let K = K (κ1, . . . ,κu)(q1, . . . , qe) be a rational function field over
a field K and consider the mixed qqq-multibasic hypergeometric products

P1(n) =
n∏

k=�1

h1(k,qqq
k), . . . , Pm(n) =

n∏

k=�1

hm(k,qqqk) ∈ Prod(K(n,qqqn)) (11)

with �i ∈ N and hi (x, ttt) ∈ K(x, ttt) s.t. hi (k,qqqk) has no pole and is non-zero for
k � �i .
Then there exist irreducible monic polynomials f1, . . . , fs ∈ K[x, ttt] \ K, nonnega-
tive integers �′

1, . . . , �
′
s and a finite algebraic field extension K ′ of K with a λ-th root

of unity ζ ∈ K ′ and elements α1, . . . ,αw ∈ K ′∗ which are not roots of unity with the
following properties.

One can choose natural numbers μi , δi ∈ N for 1 � i � m, integers ui, j with 1 �
i � m, 1 � j � w, integers vi, j with 1 � i � m, 1 � j � s and rational functions
ri ∈ K(x, ttt)∗ for 1 � i � m such that the following holds:

1. For all n ∈ N with n � δi ,

Pi (n) = (
ζn

)μi
(
αn
1

)ui,1· · · (αn
w

)ui,wri (n,qqqn)

⎛

⎝
n∏

k=�′
1

f1(k,qqq
k)

⎞

⎠

vi,1

· · ·
⎛

⎝
n∏

k=�′
s

fs(k,qqq
k)

⎞

⎠

vi,s

. (12)

2. The sequences with entries from the field K
′ = K ′(κ1, . . . ,κu)(q1, . . . , qe),

〈
αn
1

〉
n�0, . . . ,

〈
αn

w

〉
n�0,

〈 n∏

k=�′
1

f1(k,qqq
k)

〉
n�0, . . . ,

〈 n∏

k=�′
s

fs(k,qqq
k)

〉
n�0, (13)

are among each other algebraically independent over τ
(
K

′(x, ttt)
)[〈

ζn
〉
n�0

]
;

here τ : K
′(x, ttt) → S (K′) is a difference ring monomorphism where τ ( ab ) =

〈ev (
a
b , n

)〉
n�0 for a, b ∈ K

′[x, ttt] is defined by (9).

If K is a strongly σ-computable field (see Definition 4.1 below), then the components
in (12) are computable.

Namely, Theorem 3.1 provides a solution to Problem RPE as follows. Let P(n) ∈
ProdE(K(n,qqqn))be defined as in (3)with S ⊆ Z

m finite,a(ν1,...,νm )(n) ∈ K(n,qqqn) and
where the products Pi (n) are given as in (11). Now assume that we have computed
all the components as stated in Theorem 3.1. Then determine λ ∈ N such that all
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a(n1,...,nm )(n) have no pole for n � λ, and set δ = max(λ, δ1, . . . , δm). Moreover,
replace all Pi with 1 � i � m by their right-hand sides of (12) in the expression
P(n) yielding the expression Q(n) ∈ ProdE(K′(n,qqqn)). Then by this construction
we have P(n) = Q(n) for all n � δ. Furthermore, part (2) of Theorem 3.1 shows
part (2) of Problem RPE.

Finally, we look at the zero-recognition statement of part (3) of Problem RPE.
If Q = 0, then P(n) = 0 for all n � δ by part (1) of Problem RPE. Conversely, if
P(n) = 0 for all n from a certain point on, then also Q(n) = 0 holds for all n from
a certain point on by part (1). Since the sequences (13) are algebraically indepen-
dent over τ (K′(x, ttt))[〈ζn〉n�0], the expression Q(n) must be free of these products.
Consider the mixed multibasic difference field (K′(x, ttt),σ) and the A-extension
(K′(x, ttt)[ϑ],σ) of (K′(x, ttt),σ) of order λ with σ(ϑ) = ζ ϑ. By Corollary 5.1 below
it follows that themixedmultibasic differencefield (K′(x, ttt),σ) is a��-extension of
(K′,σ) with const(K′,σ) = K

′. Thus by Lemma 2.1 it follows that the A-extension
is an R-extension. In particular, it follows by Lemma 2.2 that the homomorphic
extension of τ from (K′(x, ttt),σ) to (K′(x, ttt)[ϑ],σ) with τ (ϑ) = 〈ζn〉n�0 is a K

′-
embedding. Since Q(n) is a polynomial expression in ζn with coefficients from
K

′(n,qqqn) (ζn comes from (12)), we can find an h(x, ttt,ϑ) ∈ K
′(x, ttt)[ϑ] such that

the expression Q(n) equals h(n,qqqn, ζn). Further observe that τ (h) and the produced
sequence of Q(n) agree from a certain point on. Thus τ (h) = 000 and since τ is a
K

′-embedding, h = 0. Consequently, Q(n) must be the zero-expression.
Wewill provide a proof (and an underlying algorithm) for Theorem3.1 by tackling

the following subproblem formulated in the difference ring setting.

Given a mixed qqq-multibasic difference field (F,σ) with F = K(x)(t1) · · · (te)
where σ(x) = x + 1 and σ(t�) = q� t� for 1 � � � e; given h1, . . . , hm ∈ F

∗.
Find anR�-extension (A,σ) of (K′(x)(t1) · · · (te),σ)whereK

′ is an algebraic
field extension of K and g1, . . . , gm ∈ A \ {0}where σ(gi ) = σ(hi ) gi for 1 �
i � m.

Namely, taking the special case F = K(x) with σ(x) = x + 1, we will tackle the
above problem in Theorem 5.1, and we will derive the general case in Theorem 6.2.
Then based on the particular choice of the gi this will lead us directly to Theorem 3.1.
We will now give a concrete example of the above strategy for hypergeometric
products. An example for the mixed qqq-multibasic situation is given in Example 6.1.

Example 3.1 Take the rational function field K = K (κ) defined over the algebraic
number field K = Q

(
(ι + √

3),
√−13

)
and take the rational function field K(x)

defined over K. Now consider the hypergeometric product expressions

P(n) =
n∏

k=1

h1(k) +
n∏

k=1

h2(k) +
n∏

k=1

h3(k) ∈ ProdE(K(n)) (14)

with
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h1(x) = −13
√−13κ
x , h2(x) = −784 (κ+1)2 x

13
√−13 (ι+√

3)4 κ (x+2)2
, h3 = −17210368 (κ+1)5 x

13
√−13 (ι+√

3)10 κ (x+2)5

(15)

where h1, h2, h3 ∈ K(x). With our algorithm (see Theorem 5.4 below) we construct
the algebraic field extension K ′ = Q((−1)

1
6 ,

√
13) of K , take the rational func-

tion field K
′ = K ′(κ) and define on top the rational difference field (K′(x),σ) with

σ(x) = x + 1. Based on this, we obtain the R�-extension (A,σ) of (K′(x),σ) with

A = K
′(x)[ϑ][y1, y−1

1 ][y2, y−1
2 ][y3, y−1

3 ][y4, y−1
4 ][z, z−1] (16)

and the automorphism σ(ϑ) = (−1)
1
6 ϑ, σ(y1) = √

13 y1, σ(y2) = 7 y2, σ(y3) =
κ y3, σ(y4) = (κ + 1) y4, σ(z) = (x + 1) z; note that const(A,σ) = K

′. Now con-
sider the difference ring homomorphism τ : A → S (K′) which we define as fol-
lows. For the base field (K′(x),σ) we take the difference ring embedding τ ( ab ) =
〈ev (

a
b , n

)〉n�0 for a, b ∈ K
′[x] where ev is defined in (7). Further, applying iter-

atively part (2) of Lemma 2.2 we obtain the difference ring homomorphism τ :
A → S (K′) determined by τ (ϑ) = 〈((−1)

1
6
)n〉n�0, τ (y1) = 〈(√13

)n〉n�0, τ (y2) =
〈7n〉n�0, τ (y3) = 〈κn〉n�0,τ (y4) = 〈(κ + 1)n〉n�0 and τ (z) = 〈n!〉n�0. In addition,
since (A,σ) is an R�-extension of (K′(x),σ), it follows by part (3) of Lemma 2.2
that τ is a K

′-embedding. Hence τ (K′(x))[τ (ϑ)][τ (y1), τ (y−1
1 )] · · · [τ (y4), τ (y−1

4 )]
[τ (z), τ (z−1)] is a Laurent polynomial ring over the ring τ (K′(x))[τ (ϑ)] with
τ (ϑ) = 〈(

(−1)
1
6
)n 〉

n�δ
. In addition, we find

Q′ = ϑ9 y31 y3
z

︸ ︷︷ ︸
=: g1

+4
ϑ11 y22 y

2
4

(x + 1)2 (x + 2)2 y31 y3 z︸ ︷︷ ︸
=: g2

+32
ϑ5 y52 y

5
4

(x + 1)5 (x + 2)5 y31 y3 z
4

︸ ︷︷ ︸
=: g3

(17)

where σ(gi ) = σ(hi ) gi for i = 1, 2, 3. Thus the gi model the shift behaviors of the
hypergeometric products with the multiplicands hi ∈ K(x). In particular, we have
defined Q′ such that τ (Q′) = 〈P(n)〉n�0 holds. Rephrasing x ↔ n, ϑ ↔ (

(−1)
1
6
)n
,

y1 ↔ (√
13

)n
, y2 ↔ 7n , y3 ↔ κn , y4 ↔ (

κ + 1
)n
and z ↔ n! in (17) we get

Q(n) =
((

(−1)
1
6
)n)9 ((√

13
)n)3

κn

n! + 4
((

(−1)
1
6
)n)11 (

7n
)2 ((

κ + 1
)n)2

(n + 1)2 (n + 2)2
((√

13
)n)3

κn n!

+ 32
((

(−1)
1
6
)n)5 (

7n
)5 ((

κ + 1
)n)5

(n + 1)5 (n + 2)5
((√

13
)n)3

κn
(
n!)4

∈ ProdE(K(n)).

(18)

Note: n! and an with a ∈ K
′∗ are just shortcuts for

∏n
k=1 k and

∏n
k=1 a, respectively.

Based on the corresponding proof of Theorem3.1 at the end of Sect. 5.4we can ensure
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that P(n) = Q(n) holds for all n ∈ Nwith n � 1. Further details on the computation
steps can be found in Examples 5.3 and 5.4.

4 Algorithmic Preliminaries: Strongly σ-Computable
Fields

In Karr’s algorithm [12] and all the improvements [4, 14, 24, 26, 29, 30, 32] one
relies on certain algorithmic properties of the constant field K. Among those, one
needs to solve the following problem.

Problem GO for α1, . . . ,αw ∈ K ∗

Given a field K and α1, . . . ,αw ∈ K ∗. Compute a basis of the submodule

V := {
(u1, . . . , uw) ∈ Z

w
∣
∣
∣

w∏

i=1

αi
ui = 1

}
of Z

w over Z.

In [23] it has been worked out that Problem GO is solvable in any rational function
field K = K (κ1, . . . ,κu) provided that one can solve Problem GO in K and that one
can factor multivariate polynomials over K . In this article we require the following
stronger assumption: Problem GO can be solved not only in K (K with this property
was called σ-computable in [14, 23]) but also in any algebraic extension of it.

Definition 4.1 A field K is strongly σ-computable if the standard operations in K
can be performed, multivariate polynomials can be factored over K and ProblemGO
can be solved for K and any finite algebraic field extension of K .

Note that Ge’s algorithm [9] solves Problem GO over an arbitrary number field
K . Since any finite algebraic extension of an algebraic number field is again an
algebraic number field, it follows with Ge’s algorithm, that any number field K is
σ-computable.

Summarizing, in this article we can turn our theoretical results to algorithmic
versions, if we assume that K = K (κ1, . . . ,κu) is a rational function field over a
field K which is strongly σ-computable. In particular, the underlying algorithms
are implemented in the package NestedProducts for the case that K is a finite
algebraic field extension of Q.

Besides these fundamental properties of the constant field, we rely on further
(algorithmic) properties that can be ensured by difference ring theory. Let (F[t],σ)

be a difference ring over the field F with t transcendental over F and σ(t) = α t + β
where α ∈ F

∗ and β ∈ F. Note that for any h ∈ F[t] and any k ∈ Z we have σk(h) ∈
F[t]. Furthermore, if h is irreducible, then also σk(h) is irreducible.

Two polynomials f, h ∈ F[t] \ {0} are said to be shift co-prime, also denoted by
gcdσ( f, h) = 1, if for all k ∈ Z we have that gcd( f,σk(h)) = 1. Furthermore, we
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say that f and h are shift-equivalent, denoted by f ∼σ h, if there is a k ∈ Z with
σk ( f )
h ∈ F. If there is no such k, then we also write f �σ h.
It is immediate that ∼σ is an equivalence relation. In the following we will focus

mainly on irreducible polynomials f, h ∈ F[t]. Then observe that f ∼σ h holds if
and only if gcdσ( f, h) �= 1 holds. In the following it will be important to determine
such a k. Here we utilize the following property of ��-extensions whose proof can
be found in [12, Theorem 4] ( [7, Corollary 1.2] or [22, Theorem 2.2.4]).

Lemma 4.1 Let (F(t),σ) be a��-extension of (F,σ) and f ∈ F(t)∗. Then σk ( f )
f ∈

F for some k �= 0 iff σ(t)
t ∈ F and f = u tm with u ∈ F

∗ and m ∈ Z.

Namely, using this result one can deduce when such a k is unique.

Lemma 4.2 Let (F(t),σ) be a ��-extension of (F,σ) with σ(t) = α t + β for
α ∈ F

∗ and β ∈ F. Let f, h ∈ F[t] be irreducible with f ∼σ h. Then there is a
unique k ∈ Z with σk ( f )

h ∈ F
∗ iff σ(t)

t /∈ F or f = a t and h = b t for some a, b ∈ F
∗.

Proof Suppose on the contrary that β = 0 and f = t = h. Then σk ( f )
h ∈ F

∗ for all
k ∈ Z and thus k is not unique. Conversely, suppose that σk1( f ) = u h and σk2( f ) =
v h with k1 > k2. Then

σk1−k2 ( f )
f = u

v ∈ F
∗. Thus by Lemma 4.1, σ(t)

t ∈ F and f = a t
for some a ∈ F

∗. Thus also h = b t for some b ∈ F
∗. �

Consider the rational difference field (K(x),σ) with σ(x) = x + 1. Note that
x is a �-monomial. Let f, h ∈ K[x] \ K be irreducible polynomials. If f ∼σ h,
then there is a unique k ∈ Z with σk ( f )

h ∈ K. Similarly for the mixed qqq-multibasic
difference field (K(x)(t1) · · · (te),σ) with σ(x) = x + 1 and σ(ti ) = qi ti for 1 �
i � e we note that the ti are �-monomials; see Corollary 5.1 below. For 1 � i � e
and E = K(x)(t1) · · · (ti−1), let f, h ∈ E[ti ] be monic irreducible polynomials. If
f ∼σ h, then there is a unique k ∈ Z with σk ( f )

h ∈ E if and only f �= ti �= h. In both
cases, such a unique k can be computed if one can perform the usual operations in
K; [14, Theorem 1]. Optimized algorithms for theses cases can be found in [6, Sect.
3]. In addition, the function Z given in (8) or in (10) can be computed due to [6].
Summarizing, the following properties hold.

Lemma 4.3 Let (F,σ) be the rational or mixed q-multibasic difference field over
K as defined in Examples 2.1 and 2.2. Suppose that the usual operations2 in K are
computable. Then one compute

1. the Z-functions given in (8) or in (10);
2. one can compute for shift-equivalent irreducible polynomials f, h in K[x] (or in

K(x)(t1, . . . , ti−1)[ti ]) a k ∈ Z with σk ( f )
h ∈ K (or σk ( f )

h ∈ K(x)(t1, . . . , ti−1)).

For further considerations, we introduce the following Lemma which gives a
relation between two polynomials that are shift-equivalent.

2This is the case if K is strongly σ-computable, or if K is a rational function field over a strongly
σ-computable field.
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Lemma 4.4 Let (F(t),σ) be a difference field over a field F with t transcendental
over F and σ(t) = α t + β where α ∈ F

∗ and β ∈ F. Let f, h ∈ F[t] \ F be monic
and f ∼σ h. Then there is a g ∈ F(t)∗ with h = σ(g)

g f .

Proof Since f ∼σ h, there is a k ∈ Z and u ∈ F
∗ with σk( f ) = u h. Note that

deg( f ) = deg(h) = m. By comparing coefficient of the leading terms and using
that f, h are monic, we get u tm = σk(tm). If k � 0, set g := ∏k−1

i=0 σi (t−m f ).

Then σ(g)
g = σk (t−m f )

t−m f = σk ( f ) tm

f σk (tm )
= h u tm

f σk (tm )
= h

f . Thus, h = σ(g)
g f . If k < 0, set g :=

∏−k
i=1 σ−i ( t

m

f ). Then σ(g)
g = σk (tm f −1)

tm f −1 = tm σk ( f )
σk (tm ) f = h u tm

f σk (tm )
= h

f . Hence again h =
σ(g)
g f . �

5 Algorithmic Construction of R�-Extensions
for ProdE(K(n))

In this section we will provide a proof for Theorem 3.1 for the case ProdE(K(n)).
Afterwards, this proof strategy will be generalized for the case ProdE(K(n,qqqn)) in
Sect. 6. In both cases, we will need the following set from [12, Definition 21].

Definition 5.1 For a difference field (F,σ) and fff = ( f1, . . . , fs) ∈ (F∗)s we define

M ( fff , F) =
{
(v1, . . . , vs) ∈ Z

s
∣
∣ σ(g)

g = f v11 · · · f vss for some g ∈ F
∗
}

.

Note that M ( fff , F) is a Z-submodule of Z
s which has finite rank. We observe further

that for the special case const(A,σ) = A we have σ(g)
g = 1 for all g ∈ A

∗. Thus

M ( fff , A) = {(v1, . . . , vs) ∈ Z
s | f v11 · · · f vss = 1}

which is nothing else but the set in Problem GO.
Finally, we will heavily rely on the following lemma that ensures if a P-extension

forms a �-extension; compare also [10].

Lemma 5.1 Let (F,σ) be a difference field and let fff = ( f1, . . . , fs) ∈ (F∗)s . Then
the following statements are equivalent.

1. There are no (v1, . . . , vs) ∈ Z
s \ {0s} and g ∈ F

∗ with (31), i.e.,M ( fff , F) = {0s}.
2. One can construct a �-field extension (F(z1) · · · (zs),σ) of (F,σ) with σ(zi ) =

fi zi , for 1 � i � s.
3. One can construct a �-extension (F[z1, z−1

1 ] · · · [zs, z−1
s ],σ) of (F,σ) with

σ(zi ) = fi zi , for 1 � i � s.

Proof (1) ⇔ (2) is established by [27, Theorem 9.1]. (2) =⇒ (3) is obvious while
(3) =⇒ (2) follows by iterative application of [32, Corollary 2.6]. �
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Throughout this section, let (K(x),σ) be the rational difference field over a con-
stant field K, where K = K (κ1, . . . ,κu) is a rational function field over a field K .
For algorithmic reasons we will assume in addition that K is strongly σ-computable
(see Definition 4.1). In Sect. 5.1 we will treat Theorem 3.1 first for the special case
ProdE(K ). Next, we treat the case ProdE(K) in Sect. 5.2. In Sect. 5.3 we present
simple criteria to check if a tower of �-monomials ti with σ(ti )/ti ∈ K[x] forms a
�-extension. Finally, in Sect. 5.4 we will utilize this extra knowledge to construct
�-extensions for the full case ProdE(K(n)).

5.1 Construction of R�-extensions for ProdE(K )

Our construction is based on the following theorem.

Theorem 5.1 Let γ1, . . . , γs ∈ K ∗. Then there is an algebraic field extension K ′ of
K together with a λ-th root of unity ζ ∈ K ′ and elements ααα = (α1, . . . ,αw) ∈ K ′w

with M
(
ααα, K ′) = {0w} such that for all i = 1, . . . , s,

γi = ζμi α
ui,1
1 · · · αui,w

w (19)

holds for some 1 � μi � λ and (ui,1, . . . , ui,w) ∈ Z
w.

If K is strongly σ-computable, then ζ, the αi and the μi , ui, j can be computed.

Proof We prove the Theorem by induction on s. The base case s = 0 obviously
holds. Now assume that there are aλ-th root of unity ζ, elementsααα = (α1, . . . ,αw) ∈
(K ′∗)w with M

(
ααα, K ′) = {0w}, 1 � μi � λ and (vi,1, . . . vi,w) ∈ Z

w such that γi =
ζμi α

vi,1
1 · · · αvi,w

w holds for all 1 � i � s − 1.
Now consider in addition γs ∈ K ∗. First suppose the case

M
(
(α1, . . . ,αw, γs), K ′) = {0w+1}. With αw+1 := γs , we can write γs as γs =

ζλ αυ1
1 · · · αυw

w αw+1 with λ = υ1 = · · · = υw = 0. Further, with vi,w+1 = 0, we can
write γi = ζμi α

vi,1
1 · · · αvi,w

w α
vi,w+1

w+1 for all 1 � i � s − 1. This completes the proof for
this case.

Otherwise, suppose that M
(
(α1, . . . ,αw, γs), K ′) �= {0w+1} and take

(υ1, . . . , υw, us) ∈ M
(
(α1, . . . ,αw, γs), K ′) \ {0w+1}. Note that us �= 0 since

M
(
ααα, K ′) = {0w}. Then take all the non-zero integers in (υ1, . . . , υw, us) and define

δ to be their least common multiple. Define ᾱ j := α

1
|us |
j ∈ K ′′ for 1 � j � w where

K ′′ is some algebraic field extension of K ′ and let λ′ = lcm(δ,λ). Take a primitive
λ′-th root of unity ζ ′ := e

2 π ι
λ′ . Then we can express γs in terms of ᾱ1, . . . , ᾱw by

γs = (ζ ′)νs
w∏

j=1

α
− υ j

us
j = (ζ ′)νs

w∏

j=1

(α j )
−υ j · sign(us ) (20)
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with 1 � νs � λ′. Note that for each j,−υ j · sign(us) ∈ Z. Thus we have been able
to represent γs as a power product of ζ ′ and elements ααα = (α1, . . . ,αw) ∈ (K ′′∗)w
which are not roots of unity. Consequently, we can write γi = (ζ ′)μi ᾱ

ui,1
1 · · · ᾱui,w

w for
1 � i � s − 1, where ui, j = |us | vi, j for 1 � j � w and 1 � μi � λ′. Now suppose
that M

(
ααα, K ′′) �= {0w}. Then there is a (m1, . . . ,mw) ∈ Z

w \ {0w} such that

1 =
w∏

j=1

(ᾱ j )
m j =

w∏

j=1

(
α

1
|us |
j

)m j =⇒
w∏

j=1

(
α

1
|us |
j

)|us |m j = 1|us | ⇐⇒
w∏

j=1

α
m j

j = 1

with (m1, . . . ,mw) �= 0w; contradicting the assumption thatM
(
ααα, K ′) = {0w}holds.

Consequently, M
(
ααα, K ′′) = {0w} which completes the induction step.

Suppose that K is strongly σ-computable. Then one can decide if M
(
ααα, K ′) is

the zero-module, and if not one can compute a non-zero integer vector. All other
operations in the proof rely on basic operations that can be carried out. �

Remark 5.1 Let γ1, . . . , γs ∈ K ∗ and suppose that the ingredients ζ,α1, . . . ,αw and
the μi and ui, j are given as stated in Theorem 5.1. Let n ∈ N. Then by (19) we have
that

γn
i =

n∏

k=1

γi =
n∏

k=1

ζμi

n∏

k=1

α
ui,1
1 · · ·

n∏

k=1

αui,w
w = (

ζn
)μi

(
αn
1

)ui,1 · · · (αn
w

)ui,w
.

The following remarks are relevant.

1. SinceM
(
ααα, K ′) = {0w}, we know that there are no g ∈ K ′∗, and (u1, . . . , uw) ∈

Z
w \ {0w} with 1 = σ(g)

g = αu1
1 · · ·αuw

w . In short we say that α1, . . . ,αw satisfy
no integer relation. Thus it follows by Lemma 5.1 that there is a �-extension
(E,σ) of (K ′,σ)withE = K ′[y1, y−1

1 ] · · · [yw, y−1
w ] and σ(y j ) = α j y j for j =

1, . . . , w.
2. Consider the A-extension (E[ϑ],σ) of (E,σ) with σ(ϑ) = ζ ϑ of order λ. By

Lemma2.1 this is anR-extension. (Take the quotient field ofE, applyLemma2.1,
and then take the corresponding subring.)

3. Summarizing, the product expressions γn
1 , . . . , γ

n
s can be rephrased in the R�-

extension (K ′[y1, y−1
1 ] · · · [yw, y−1

w ][ϑ],σ) of (K ′,σ). Namely,we can represent
αn

j by y j and ζn by ϑ.
4. If K = Q (or if K is the quotient field of a certain unique factorization domain),

this result can be obtained without any extension, i.e., K = K ′; see [23].

So far, Ocansey’s Mathematica package NestedProducts contains the algo-
rithmic part of Theorem 5.1 if K is an algebraic number field, i.e., a finite algebraic
field extension of the field of rational numbers Q. More precisely, the field is given
in the form K = Q(θ) together with an irreducible polynomial f (x) ∈ Q[x] with
f (θ) = 0 such that the degree n := deg f is minimal ( f is also called the minimal
polynomial of θ). Let θ1, . . . , θn ∈ C be the roots of the minimal polynomial f (x).
Then the mappings ϕi : Q(θ) → C defined as ϕi (

∑n−1
j=0 γ j ϑ

j ) = ∑n−1
j=0 γ j ϑ

j
i with
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γ j ∈ Q are the embeddings of Q(θ) into the field of complex numbers C for all
i = 1, . . . , n. Note that any finite algebraic extension K ′ of K can be also repre-
sented in a similar manner and can be embedded into C. Subsequently, we consider
algebraic numbers as elements in the subfield ϕi (Q(θ)) of C for some i .

Now let K be such a number field. Applying the underlying algorithm of The-
orem 5.1 to given γ1, . . . , γs ∈ K ∗ might lead to rather complicated algebraic field
extensions in which the αi are represented. It turned out that the following strategy
improved this situation substantially. Namely, consider themap, ‖ ‖ : K → Rwhere

R is the set of real numbers with γ �→ 〈γ, γ〉 12 where 〈γ, γ〉 denotes the product of
γ with its complex conjugate. In this setting, one can solve the following problem.

Problem RU for γ ∈ K ∗.

Given γ ∈ K ∗. Find, if possible, a root of unity ζ such that γ = ‖γ‖ ζ holds.

Lemma 5.2 If K is an algebraic number field, then Problem RU for γ ∈ K ∗ is
solvable in K or some finite algebraic extension K ′ of K .

Proof Let γ ∈ K = Q(α) where p(x) is the minimal polynomial of α. We consider
two cases. Suppose that ‖γ‖ /∈ K . Then using the Primitive Element Theorem (see,
e.g., [34, p. 145]) we can construct a new minimal polynomial which represents
the algebraic field extension K ′ of K with ‖γ‖ ∈ K ′. Define ζ := γ

‖γ‖ ∈ K ′. Note
that ‖ζ‖ = 1. It remains to check if ζ is a root of unity,3 i.e., if there is an n ∈ N

with ζn = 1. This is constructively decidable since K ′ is strongly σ-computable.
In the second case we have ‖γ‖ ∈ K , and thus ζ := γ

‖γ‖ ∈ K . Since K is strongly
σ-computable, one can decide again constructively if there is an n ∈ N with ζn = 1.

As preprocessing step (before we actually apply Theorem 5.1) we check algorith-
mically if we can solve Problem RU for each of the algebraic numbers γ1, . . . , γs .
Extracting their roots of unity and applying Proposition 5.1, we can compute a com-
mon λ-th root of unity that will represent all the other roots of unity.

Proposition 5.1 Let a and b be distinct primitive roots of unity of order λa and
λb, respectively. Then there is a primitive λc-th root of unity c such that for some
0 � ma,mb < λc we have cma = a and cmb = b.

Proof Take primitive roots of unity of orders λa and λb, say, α = e
2 π ι
λa and β = e

2πι
λb .

Let a = αu and b = βv for 0 � u < λa and 0 � v < λb. Define λc := lcm(λa,λb)

and take a primitive λc-th root of unity, c = e
2πι
λc . Then withma = u λc

λa
mod λc and

mb = v λc
λb

mod λc the Proposition is proven. �

3ζ lies on the unity circle. However, not every algebraic number on the unit circle is a root of unity:

Take for instance 1−√
3

2 + 3
1
4√
2

ι and its complex conjugate; they are on the unit circle, but they

are roots of the polynomial x4 − 2 x3 − 2 x + 1 which is irreducible in Q[x] and which is not a
cyclotomic polynomial. For details on number fields containing such numbers see [16].



196 E. D. Ocansey and C. Schneider

Example 5.1 With K = Q(ι + √
3,

√−13), we can extract the following products

n∏

k=1

−13
√−13

︸ ︷︷ ︸
=: γ′

1

,

n∏

k=1

−784

13
√−13 (ι + √

3)4
︸ ︷︷ ︸

=: γ′
2

,

n∏

k=1

−17210368

13
√−13 (ι + √

3)10
︸ ︷︷ ︸

=: γ′
3

(21)

from (14). Let γ1 = −13, γ2 = √−13, γ3 = −784, γ4 = 13, γ5 = (ι + √
3) and

γ6 = −17210368. Applying Problem RU to each γi we get the roots of unity
1,−1, ι, ι+√

3
2 with orders 1, 2, 4, 12, respectively. By Proposition 5.1, the order

of the common root of unity is 12. Among all the possible 12-th root of unity, we
take ζ := e

π ι
6 = (−1)

1
6 . Note that we can express the other roots of unity with less

order in terms of our chosen root of unity, ζ. In particular, we can write 1,−1, ι as
ζ12, ζ6, ζ3, respectively. Consequently, (21) simplifies to

((
(−1)

1
6
)n)9

n∏

k=1

13
√
13,

((
(−1)

1
6
)n)11

n∏

k=1

49

13
√
13

,
((

(−1)
1
6
)n)5

n∏

k=1

16807

13
√
13

.

(22)
The pre-processing step yields the numbers γ∗

1 = √
13, γ∗

2 = 13, γ∗
3 = 49 and

γ∗
4 = 16807 which are not roots of unity. Now we carry out the steps worked

out in the proof of Theorem 5.1. NestedProducts uses Ge’s algorithm [9]
to given α1 = √

13 and α′
2 = 49 and finds out that there is no integer relation,

i.e., M
(
(α1,α

′
2), K

′) = {02} with K ′ = Q
(
(−1)

1
6 ,

√
13

)
. For the purpose of work-

ing with primes whenever possible, we write α′
2 = α2

2 where α2 = 7. Note that,
M

(
(α1,α2), K ′) = {02}. Now take the AP-extension (K ′[ϑ][y1, y−1

1 ][y2, y−1
2 ],σ)

of (K ′,σ)withσ(ϑ) = (−1)
1
6 ϑ,σ(y1) = √

13 y1 andσ(y2) = 7 y2. By our construc-
tion and Remark 5.1 it follows that the AP-extension is an R�-extension. Further,
with α1 and α2 we can write 13 = (√

13
)2 · 70, 49 = (√

13
)0 · 72 and 16807 =

(√
13

)0 · 75. Hence for a′
1 = ϑ9 y31 , a

′
2 = ϑ11 y22

y31
, a′

3 = ϑ5 y52
y31

we get σ(a′
i ) = γ′

i a
′
i for

i = 1, 2, 3. Thus the shift behavior of the products in (21) is modeled by a′
1, a

′
2, a

′
3,

respectively. In particular, the products in (21) can be rewritten to

((
(−1)

1
6
)n)9 ((√

13
)n)3

,
((

(−1)
1
6
)n)11

(
7n

)2

((√
13

)n)3 ,
((

(−1)
1
6
)n)5

(
7n

)5

((√
13

)n)3 .

(23)

5.2 Construction of R�-extensions for ProdE(K)

Next, we treat the case that K = K (κ1, . . . ,κu) is a rational function field where we
suppose that K is strongly σ-computable.
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Theorem 5.2 LetK = K (κ1, . . . ,κu) be a rational function field over a field K and
let γ1, . . . , γs ∈ K

∗. Then there is an algebraic field extension K ′ of K together with
a λ-th root of unity ζ ∈ K ′ and elementsααα = (α1, . . . ,αw) ∈ K ′(κ1, . . . ,κu)

w with
M

(
ααα, K ′(κ1, . . . ,κu)

) = {0w} such that for all i = 1, . . . , s we have (19) for some
1 � μi � λ and (ui,1, . . . , ui,w) ∈ Z

w.
If K is strongly σ-computable, then ζ, the αi and the μi , ui, j can be computed.

Proof There are monic irreducible4 pairwise different polynomials f1, . . . , fs from
K [κ1, . . . ,κu] and elements c1, . . . , cs ∈ K ∗ such that for all i with 1 � i � s we
have

γi = ci f
zi,1
1 f zi,22 · · · f zi,ss (24)

with zi, j ∈ Z. ByTheorem5.1 there existααα = (α1, . . . ,αw) ∈ (K ′∗)w in an algebraic
field extension K ′ of K with M

(
ααα, K ′) = {0w} and a root of unity ζ ∈ K ′ such that

ci = ζμi α
ui,1
1 · · ·αui,w

w (25)

holds for some mi , ui, j ∈ N. Hence γi = ζμi α
ui,1
1 · · ·αui,w

w f zi,11 f zi,22 · · · f zi,ss . Now let
(ν1, . . . , νw,λ1, . . . ,λs) ∈ Z

w+s with 1 = αν1
1 αν2

2 · · · ανw
w f λ1

1 f λ2
2 · · · f λs

s . Since the
fi are all irreducible and the αi are from K ′ \ {0}, it follows that λ1 = · · · = λs = 0.
Note that αν1

1 αν2
2 · · ·ανw

w = 1 holds in K ′ if and only if it holds in K ′(κ1, . . . ,κu).
Thus by M

(
ααα, K ′) = {0w} we conclude that ν1 = · · · = νw = 0. Consequently,

M
(
(α1, . . . ,αw, f1, . . . , fs), K ′(κ1, . . . ,κu)

) = {0w+s}.
Now suppose that the computational aspects hold. Since one can factorize poly-

nomials in K [κ1, . . . ,κu], the representation (24) is computable. In particular, the
representation (25) is computable by Theorem 5.1. This completes the proof. �

Note that again Remark 5.1 is in place where K ′(κ1, . . . ,κu) takes over the role
of K ′: using Theorem 5.2 in combination with Lemma 5.1 we can construct a �-
extension in which we can rephrase products defined overK. Further, we remark that
the package NestedProducts implements this machinery for the case that K is
an algebraic number field. Summarizing, we allow products that depend on extra
parameters. This will be used for the multibasic case with K = K (q1, . . . , qe) for a
field K (K might be again, e.g., a rational function field defined over an algebraic
number field). We remark further that for the fieldK = Q(κ1, . . . ,κu) this result can
be accomplished without any field extension, i.e., K

′ = K; see [23].

Example 5.2 (Cont. 5.1) Let K
′ = K ′(κ) with K ′ = Q

(
(−1)

1
6 ,

√
13

)
and consider

4It would suffice to require that the fi ∈ K [κ1, . . . ,κu] \ K are monic and pairwise co-prime. For
practical reasons we require in addition that the fi are irreducible. For instance, suppose we have to
deal with (κ(κ + 1))n . Then we could take f1 = κ(κ + 1) and can adjoin the �-monomial σ(t) =
f1 t to model the product. However, if in a later step also the unforeseen products κn and (κ + 1)n

arise, one has to split t into two monomials, say t1, t2, with σ(t1) = κ t1 and σ(t2) = (κ + 1) t2.
Requiring that the fi are irreducible avoids such undesirable redesigns of an already constructed
R�-extension.
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n∏

k=1

−13
√−13κ

︸ ︷︷ ︸
=: γ1

,

n∏

k=1

−784 (κ + 1)2

13
√−13 (ι + √

3)4 κ
︸ ︷︷ ︸

=: γ2

,

n∏

k=1

−17210368 (κ + 1)5

13
√−13 (ι + √

3)10 κ
︸ ︷︷ ︸

=: γ3

(26)

which are instances of the products from (14). By Example 5.1 the products
in (21) can be modeled in the R�-extension (K ′[ϑ][y1, y−1

1 ][y2, y−1
2 ],σ) of

(K ′,σ). Note that κ, (κ + 1) ∈ K [κ] \ K are both irreducible over K . Thus

M
(
(
√
13, 7,κ,κ + 1), K

′
)

= {04} holds. Consequently by Remark 5.1,

(K′[ϑ] 〈y1〉 〈y2〉 〈y3〉 〈y4〉,σ) is an R�-extension of (K′,σ) with σ(y3) = κ y3 and
σ(y4) = (κ + 1) y4. Here the�-monomials y3 and y4 modelκn and (κ + 1)n , respec-
tively. In particular, for i = 1, 2, 3 we get σ(ai ) = γi ai with

a1 = ϑ9 y31 y3, a2 = ϑ11 y22 y24
y31 y3

, a3 = ϑ5 y52 y54
y31 y3

. (27)

In short, a1, a2, a3 model the shift behaviors of the products in (26), respectively.

5.3 Structural Results for Single Nested �-extensions

Finally, we focus on products where non-constant polynomials are involved. Similar
to Theorem 5.2 we will use irreducible factors as main building blocks to define our
�-extensions. The crucial refinement is that these factors are also shift co-prime;
compare also [23, 28]. Here the following two lemmas will be utilized.

Lemma 5.3 Let (F(t),σ) be a��-extension of (F,σ)with σ(t) = α t + β (α ∈ F
∗

and β = 0 or α = 1 and β ∈ F). Let fff = ( f1, . . . , fs) ∈ (F[t] \ F)s . Suppose that

∀ i, j (1 � i < j � s) : gcdσ( fi , f j ) = 1 (28)

holds and that for i with 1 � i � s we have that5

σ( fi )
fi

∈ F ∨ ∀ k ∈ Z \ {0} : gcd( fi ,σk( fi )) = 1. (29)

Then for all h ∈ F
∗ there does not exist (v1, . . . , vs) ∈ Z

s \ {0s} and g ∈ F(t)∗ with

σ(g)

g
= f v11 · · · f vss h. (30)

In particular, M ( fff , F(t)) = {0s}.
Proof Suppose that (28) and (29) hold. Now let h ∈ F

∗ and assume that there are a
g ∈ F(t)∗ and (v1, . . . , vs) ∈ Z

s \ {0s} with (30). Suppose that β = 0 and g = u tm

5We note that (29) could be also rephrased in terms of Abramov’s dispersion [2, 7].
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for some m ∈ Z and some u ∈ F
∗. Then σ(g)

g ∈ F. Hence vi = 0 for 1 � i � s since
the fi are pairwise co-prime by (28), a contradiction. Thus we can take a monic
irreducible factor, say p ∈ F[t] \ F of g where p �= t if β = 0. In addition, among
all these possible factors we can choose one with the property that for k > 0, σk(p)
is not a factor in g. Note that this is possible by Lemma 4.2. Then σ(p) does not
cancel in σ(g)

g . Thus σ(p) | fi for some i with 1 � i � s. On the other hand, let
r � 0 be minimal such that σr (p) is the irreducible factor in g with the property
that σr (p) does not occur in σ(g). Note that this is again possible by Lemma 4.2.
Then σr (p) does not cancel in σ(g)

g . Therefore, σr (p) | f j for some j with 1 � j � s.
Consequently, gcdσ( fi , f j ) �= 1. By (28) it follows that i = j . In particular by (29) it
follows thatσ( fi )/ fi ∈ F. ByLemma 4.1 this implies fi = w tm withm ∈ Z,w ∈ F

∗
and β = 0. In particular, p = t , which we have already excluded. In any case, we
arrive at a contradiction and conclude that v1 = · · · = ve = 0. �

Note that condition (28) implies that the fi are pairwise shift-coprime. In addition
condition (29) implies that two different irreducible factors in fi are shift-coprime.
The next lemma considers the other direction.

Lemma 5.4 Let (F(t),σ) be a difference field extension of (F,σ) with t transcen-
dental over F and σ(t) = α t + β where α ∈ F

∗ and β ∈ F. Let fff = ( f1, . . . , fs) ∈
(F[t] \ F)s be irreducible monic polynomials. If there are no (v1, . . . , vs) ∈ Z

s \ {0s}
and g ∈ F(t)∗ with

σ(g)
g = f v11 · · · f vss , (31)

i.e., if M ( fff , F(t)) = {0s}, then (28) holds.

Proof Suppose there are i, j with 1 � i < j � s and gcdσ( fi , f j ) �= 1. Since fi , f j
are irreducible, f ∼ g. Thus by Lemma 4.4 there is a g ∈ F(t)∗ with fi = σ(g)

g f j .

Hence σ(g)
g = fi f

−1
j and thus we can find a (v1, . . . , vs) ∈ Z

s \ {0s} with (30). �

Summarizing, we arrive at the following result.

Theorem 5.3 Let (F(t),σ) be a ��-extension of (F,σ). Let fff = ( f1, . . . , fs) ∈
(F[t] \ F)s be irreducible monic polynomials. Then the following statements are
equivalent.

1. ∀ i, j : 1 � i < j � s, gcdσ( fi , f j ) = 1.
2. There does not exist (v1, . . . , vs) ∈ Z

s \ {0s} and g ∈ F(t)∗ with σ(g)
g =

f v11 · · · f vss , i.e., M ( fff , F(t)) = {0s}.
3. One can construct a �-field extension (F(t)(z1) · · · (zs),σ) of (F(t),σ) with

σ(zi ) = fi zi , for 1 � i � s.
4. One can construct a�-extension (F(t)[z1, z−1

1 ] · · · [zs, z−1
s ],σ) of (F(t),σ)with

σ(zi ) = fi zi , for 1 � i � s.

Proof Since the fi are irreducible, the condition (29) always holds. Therefore
(1) =⇒ (2) follows fromLemma 5.3. Further, (2) =⇒ (1) follows fromLemma 5.4.
The equivalences between (2), (3) and (4) follow by Lemma 5.1. �



200 E. D. Ocansey and C. Schneider

5.4 Construction of R�-extensions for ProdE(K(n))

Finally, we combine Theorems 5.2 and 5.3 to obtain a �-extension in which expres-
sions from ProdE(K(n)) can be rephrased in general. In order to accomplish this
task, we will show in Lemma 5.6 that the �-monomials of the two constructions in
the Sects. 5.2 and 5.3 can be merged to one R�-extension. Before we arrive at this
result some preparation steps are needed.

Lemma 5.5 Let (F(t),σ) be a �-extension of (F,σ) with σ(t) = t + β and let
(E,σ) be a �-extension of (F,σ). Then one can construct a �-extension (E(t),σ)

of (E,σ) with σ(t) = t + β.

Proof Let (E,σ) be a�-extension of (F,σ)withE = F(t1) · · · (te) and suppose that
there is a g ∈ E with σ(g) = g + β. Let i be minimal such that g ∈ F(t1) · · · (ti ).
Since F(t) is a �-extension of F, it follows by part (3) of Theorem 2.1 that there is
no g ∈ F with σ(g) = g + β. Then [13, Lemma 4.1] implies that g cannot depend
on ti , a contradiction. Thus there is no g ∈ E with σ(g) = g + β and by part (3) of
Theorem 2.1 we get the �-extension (E(t),σ) of (E,σ) with σ(t) = t + β. �

As a by-product of the above lemma it follows that the mixedqqq-multibasic difference
field is built by �-monomials and one �-monomial.

Corollary 5.1 The mixed qqq-multibasic diff. ring (F,σ) with F = K(x)(t1) · · · (te)
from Example 2.2 is a ��-extension of (K,σ). In particular, const(F,σ) = K.

Proof Since the elementsq1, . . . , qe are algebraically independent among each other,
there are no g ∈ K

∗ and (v1, . . . , ve) ∈ Z
e \ {0e} with 1 = σ(g)

g = qv1
1 · · · qve

e . There-
fore by Lemma 5.1, (E,σ) with E = K(t1) · · · (te) is a �-extension of (K,σ) with
σ(ti ) = qi ti for 1 � i � e. Since (K(x),σ) is a �-extension of (K,σ), we can
activate Lemma 5.5 and can construct the �-extension (E(x),σ) of (E,σ). Note
that const(E(x),σ) = const(E,σ) also implies that const(K(x)(t1) · · · (te),σ) =
const(K(x),σ) = K. In particular, theP-extension (K(x)(t1) · · · (te),σ)of (K(x),σ)

is a �-extension. Consequently, (F,σ) is a ��-extension of (K,σ). �

Proposition 5.2 Let (F(t1) · · · (te),σ) be a ��-extension of (F,σ) with σ(ti ) =
αi ti + βi where βi �= 0 or αi = 1. Let f ∈ F

∗. If there is a g ∈ F(t1, . . . , te)∗ with
σ(g)
g = f , then g = ω t v11 · · · t vee where ω ∈ F

∗. In particular, vi = 0, if βi �= 0 (i.e.,
ti is a �-monomial) or vi ∈ Z, if βi = 0 (i.e., ti is a �-monomial).

Proof See [22, Corollary 2.2.6, p. 76]. �

Lemma 5.6 Let (K(x),σ) be the rational difference field with σ(x) = x + 1 and
let (K(x)[z1, z−1

1 ] · · · [zs, z−1
s ],σ) be a �-extension of (K(x),σ) as given in The-

orem 5.3 (item (4)). Further, let K
′ be an algebraic field extension of K and let

(K′[y1, y−1
1 ] · · · [yw, y−1

w ],σ) be a�-extension of (K′,σ)with σ(yi )
yi

∈ K
′ \ {0}. Then

the difference ring (E,σ)withE = K
′(x)[y1, y−1

1 ] · · · [yw, y−1
w ][z1, z−1

1 ] · · · [zs, z−1
s ]

is a�-extension of (K′(x),σ). Furthermore, theA-extension (E[ϑ],σ) of (E,σ)with
σ(ϑ) = ζ ϑ of order λ is an R-extension.
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Proof By iterative application of [32, Corollary 2.6] it follows that (F,σ) is a �-
field extension of (K′,σ) with F = K

′(y1) · · · (yw). Note that (K′(x),σ) is a �-
extension of (K′,σ). Thus by Lemma 5.5 (F(x),σ) is a �-extension of (F,σ). We
will show that (E,σ) with E = F(x)(z1) · · · (zs) forms a �-extension of (F(x),σ).
Since (K(x)[z1, z−1

1 ] · · · [zs, z−1
s ],σ) is a �-extension of (K(x),σ) as given in The-

orem 5.3 (item (4)), we conclude that also (item 2) of the theorem, i.e., condi-
tion (28) holds. Now suppose that there is a g ∈ F(x)∗ and (l1, . . . , ls) ∈ Z

s with
σ(g)
g = f l11 · · · f lss ∈ K(x). By reordering of the generators in (F(x),σ)we get the�-

extension (K′(x)(y1) · · · (yw),σ) of (K′(x),σ). By Proposition 5.2 we conclude that
g = q yn11 · · · ynw

w with n1, . . . , nw ∈ Z and q ∈ K
′(x)∗. Thus σ(g)

g = σ(q)

q αn1
1 · · · αnw

w

and hence
σ(q)

q
= u f l11 · · · f lss (32)

for some u ∈ K
′∗. Now suppose that fi , f j ∈ K[x] ⊂ F[x] with i �= j are not shift-

coprime in F[x]. Then there are a k ∈ Z and v, f̃i , f̃ j ∈ F[x] \ F with σk( f j ) = v f̃ j

and fi = v f̃i . But this implies that fi
f̃ j
f̃i

= σk( f j ) ∈ K[x]. Since fi ,σ( f j ) ∈ K[x],
this implies that f̃ j

f̃i
∈ K(x). Since fi ,σ( f j ) are both irreducible inK[x]we conclude

that f̃ j
f̃i

∈ K. Consequently, fi and f j are also not shift-coprime in K[x], a contradic-
tion. Thus the condition (28) holds not only inK[x] but also inF[x]. Now suppose that
gcd( fi ,σk( fi )) �= 1 holds in F[x] for some k ∈ Z \ {0}. By the same arguments as
above, it follows that σk( fi ) = u fi for some u ∈ K. By Lemma 4.1 we conclude that
fi = t and σ(t)/t ∈ F. Therefore also condition (29) holds. Consequently, we can
activate Lemma 5.3 and it follows from (32) that l1 = · · · = lm = 0. Consequently,
we can apply Theorem 5.3 (equivalence (2) and (3)) and conclude that (E,σ) is a
�-extension of (F(x),σ). Finally, consider the A-extension (E[ϑ],σ) of (E,σ)with
σ(ϑ) = ζ ϑ of order λ. By Lemma 2.1 it is an R-extension. Finally, consider the sub-
difference ring (E,σ)withE = K

′(x)[y1, y−1
1 ] · · · [yw, y−1

w ][z1, z−1
1 ] · · · [zs, z−1

s ][ϑ]
which is an AP-extension of (K′(x),σ). Since const(E,σ) = const(K′(x),σ) = K

′,
it is an R�-extension. �

Remark 5.2 Take (E,σ) with E = K
′(x)[y1, y−1

1 ] · · · [yw, y−1
w ][z1, z−1

1 ] · · ·
[zs, z−1

s ][ϑ] as constructed in Lemma 5.6. Then one can rearrange the generators inE

and gets the R�-extension (K′(x)[ϑ][y1, y−1
1 ] · · · [yw, y−1

w ][z1, z−1
1 ] · · · [zs, z−1

s ],σ)

of (K′(x),σ).

With these considerations we can derive the following theorem that enables one
to construct R�-extension for ProdE(K(n)).

Theorem 5.4 Let (K(x),σ) be the rational difference fieldwithσ(x) = x + 1where
K = K (κ1, . . . ,κu) is a rational function field over a field K . Let h1, . . . , hm ∈
K(x)∗. Then one can construct an R�-extension (A,σ) of (K′(x),σ) with

A = K
′(x)[ϑ][y1, y−1

1 ] · · · [yw, y−1
w ][z1, z−1

1 ] · · · [zs, z−1
s ]
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and K
′ = K ′(κ1, . . . ,κu) where K ′ is an algebraic field extension of K such that

• σ(ϑ) = ζ ϑ where ζ ∈ K ′ is a λ-th root of unity;

• σ(y j )

y j
= α j ∈ K

′ \ {0} for 1 � j � w where the α j are not roots of unity;

• σ(zν)

zν
= fν ∈ K[x] \ K are irreducible and shift co-prime for 1 � ν � s;

holds with the following property. For 1 � i � m one can define

gi = ri ϑ
μi yui,11 · · · yui,ww zvi,11 · · · zvi,ss ∈ A (33)

with 0 � μi � λ − 1, ui,1, . . . , ui,w,vi,1, . . . , vi,s ∈ Z and ri ∈ K(x)∗ such that

σ(gi ) = σ(hi ) gi . (34)

If K is strongly σ-computable, the components of the theorem can be computed.

Proof For 1 � i � m we can take pairwise different monic irreducible polynomials6

p1, . . . , pn ∈ K[x] \ K γ1, . . . , γm ∈ K
∗ and di,1, . . . , di,n ∈ Z such that σ(hi ) =

γi p
di,1
1 · · · pdi,nn holds. Note that this representation is computable if K is strongly

σ-computable. By Theorem 5.2 it follows that there are a λ-th root of unity ζ ∈ K ′,
elements ααα = (α1, . . . ,αw) ∈ (K′∗)w with M

(
ααα, K

′) = {0w} and integer vectors
(ui,1, . . . , ui,w) ∈ Z

w and μi ∈ N with 0 � μi < λ such that γi = ζμi α
ui,1
1 · · · αui,w

w

holds for all 1 � i � m. Obviously, the α j with 1 � j � w are not roots of unity.
By Lemma 5.1 we get the�-extension (K′[y1, y−1

1 ] · · · [yw, y−1
w ],σ) of (K′,σ)with

σ(y j ) = α j y j for 1 � j � w and we obtain

ai = ϑμi yui,11 · · · yui,ww (35)

with
σ(ai ) = γi ai (36)

for 1 � i � m.Next we proceed with the non-constant polynomials inK[x] \ K. Set
I = {p1, . . . , pn}. Then there is a partitionP = {E1, . . . ,Es} ofI with respect to
∼σ , i.e., each Ei contains precisely the shift equivalent elements ofP . Take a repre-
sentative from each equivalence classEi inP and collect them inF := { f1, . . . , fs}.
Since each fi is shift equivalentwith every element ofEi , it follows byLemma4.4 that
for all h ∈ Ei , there is a rational function r ∈ K(x)∗ with h = σ(r)

r fi for 1 � i � s.

Consequently, we get ri ∈ K(x)∗ and vi, j ∈ Z with pdi,11 · · · pdi,nn = σ(ri )
ri

f vi,11 · · · f vi,ss

6Instead of irreducibility it would suffice to require that the pi ∈ K[x] \ K satisfy property (29).
However, suppose that one takes, e.g., p1 = x(2 x + 1) leading to the �-monomial t with σ(t) =
x (2x + 1). Further, assume that later one has to introduce unexpectedly also x and 2 x + 1. Then
one has to split t to the�-monomials t1, t2 with σ(t1) = x t1 and σ(t2) = (2x + 1) t2, i.e., one has to
redesign the already constructed R�-extension. In short, irreducible polynomials provide an R��-
extension which most probably need not be redesigned if other products have to be considered.



Representing (q–)Hypergeometric Products and Mixed Versions in Difference Rings 203

for all 1 � i � s. Further, by this construction, we know that gcdσ( fi , f j ) = 1 for
1 � i < j � s. Therefore, it follows by Theorem 5.3 that we can construct the
�-extension (K(x)[z1, z−1

1 ] · · · [zs, z−1
s ],σ) of (K(x),σ) with σ(zi ) = fi zi . Now

define bi = ri t
vi,1
1 · · · t vi,ss . Then we get

σ(bi ) = pdi,11 · · · pdi,nn bi . (37)

Finally, by Lemma 5.6 and Remark 5.2 we end up at the R�-extension (A,σ)

of (K′(x),σ) with A = K
′(x)[ϑ][y1, y−1

1 ] · · · [yw, y−1
w ][z1, z−1

1 ] · · · [ze, z−1
e ] with

σ(ϑ) = ζ ϑ, σ(y j ) = α j y j for 1 � j � w and σ(zi ) = fi zi for 1 � i � s.
Now let gi be as defined in (33). Since gi = ai bi with (36) and (37), we con-

clude that (34) holds. If K is strongly σ-computable, all the ingredients delivered by
Theorems 5.1 and 5.3 can be computed. This completes the proof. �

Example 5.3 Let K = K (κ) be the rational function field over the algebraic number
field K = Q(ι + √

3,
√−13) and take the rational difference field (K(x),σ) with

σ(x) = x + 1. Given (15), we can write

σ(h1) = γ1 p
−1
1 , σ(h2) = γ2 p1 p

−2
2 , σ(h3) = γ3 p1 p

−5
2

where the γ1, γ2, γ3 are given in (26) and where we set p1 = x + 1, p2 = x + 3
as our monic irreducible polynomials. Note that p1 and p2 are shift equivalent:
gcd(p2,σ2(p1)) = p2. Consequently both factors fall into the same equivalence class
E = {σk(x + 1) | k ∈ Z} = {σk(x + 3) | k ∈ Z}. Take p1 = x + 1 as a representative
of the equivalence class E . Then by Lemma 4.4, it follows that there is a g ∈ K(x)∗
that connects the representatives to all other elements in their respective equivalence
classes. In particularwith our examplewehave x + 3 = σ(g)

g (x + 1)where g = (x +
1) (x + 2). By Theorem 5.3, it follows that (K(x)[z, z−1],σ) is a �-extension of the
differencefield (K(x),σ)withσ(z) = (x + 1) z. In this ring, the�-monomial zmod-
els n!. By Lemma 5.6 the constructed difference rings (K′[ϑ] 〈y1〉 〈y2〉 〈y3〉 〈y4〉,σ)

and (K(x) 〈z〉,σ) from Example 5.2 with K
′ = Q

(
(−1)

1
6 ,

√
13)(κ) can be merged

into a single R�-extension (A,σ) where A is (16) with the automorphism defined
accordingly. Further note that for b1 = 1

z , b2 = 1
(x+1)2(x+2)2 z , b3 = 1

(x+1)5(x+2)5z4 we

have that σ(b1) = p−1
1 b1, σ(b2) = p1 p

−2
2 b2 and σ(b3) = p1 p

−5
2 b3. Thus together

a1, a2, a3 in (27) with σ(γi ) = ai γi for i = 1, 2, 3, we define gi = ai bi for i =
1, 2, 3 and obtain σ(gi ) = σ(hi ) gi . Note that the gi are precisely the elements given
in (17).

Nowwe are ready to prove Theorem 3.1 for the special case ProdE(K(n). Namely,
consider the products

P1(n) =
n∏

k=�1

h1(k), . . . , Pm(n) =
n∏

k=�1

hm(k) ∈ Prod(K(n))
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with �i ∈ Z where �i � Z(hi ). Further, suppose that we are given the components
as claimed in Theorem 5.4.
• Now take the difference ring embedding τ ( ab ) = 〈ev (

a
b , n

)〉n�0 for a, b ∈ K[x]
where ev is defined in (7). Then by iterative application of part (2) of Lemma 2.2 we
can construct the K

′-homomorphism τ : A → S (K′) determined by the homomor-
phic continuation of

• τ (ϑ) = 〈ζn〉n�0,
• τ (yi ) = 〈αn

i 〉n�0 for 1 � i � w and
• τ (zi ) = 〈∏n

k=�′
i
fi (k − 1)〉n�0 with �′

i = Z( fi ) + 1 for 1 � i � s.

In particular, since (A,σ) is an R�-extension of (K′(x),σ), it follows by part (3) of
Lemma 2.2 that τ is a K

′-embedding.
• Finally, define for 1 � i � m the product expression

Gi (n) = ri (n) (ζn)μi (αn
1)

ui,1 · · · (αn
w)ui,w (

n∏

k=�′
1

f1(k − 1))vi,1 · · · (
n∏

k=�′
s

fs(k − 1))vi,s

from Prod(K′(n)) and define δi = max(�i , �′
1, . . . , �

′
s, Z(ri )). Observe that τ (gi ) =

〈G ′
i (n)〉n�0 with

G ′
i (n) =

{
0 if 0 � n < δi

Gi (n) if n � δi .
(38)

By (34) and the fact that τ is aK
′-embedding, it follows that S(τ (gi )) = S(τ (hi ))

τ (gi ). In particular, for n � δi we have thatGi (n + 1) = hi (n + 1)Gi (n). By defini-
tion, we have Pi (n + 1) = hi (n + 1) Pi (n) for n � δi � �i . Since Gi (n) and Pi (n)

satisfy the same first order recurrence relation, they differ only by a multiplica-
tive constant. Namely, setting Qi (n) = c Gi (n) with c = Pi (δi )

Gi (δi )
∈ (K′)∗ we have

that Pi (δi ) = Qi (δi ) and thus Pi (n) = Qi (n) for all n � δi . This proves part (1) of
Theorem 3.1.

Since τ is a K
′-embedding, the sequences

〈
αn
1

〉
n�0, . . . ,

〈
αn

w

〉
n�0,

〈 n∏

k=�′
1

f1(k − 1)
〉
n�0, . . . ,

〈 n∏

k=�′
s

fs(k − 1)
〉
n�0

are among each other algebraically independent over τ
(
K

′(x)
)[〈

ζn
〉
n�0

]
which

proves property (2) of Theorem 3.1.

Example 5.4 (Cont. Example 5.3) We have σ(gi ) = σ(hi ) gi for i = 1, 2, 3 where
the hi and gi are given in (15) and (17), respectively. For theK

′-embedding defined in
Example 3.1 we obtain ci τ (gi ) = 〈Pi (n)〉n�0 with Pi (n) = ∏n

k=1 hi (k) and c1 = 1,
c2 = 4 and c3 = 32. Since there are no poles in the gi we conclude that for
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G1(n) =
((

(−1)
1
6

)n)9 ((√
13

)n)3
κn

n! , G2(n) = 4
((

(−1)
1
6

)n)11 (
7n

)2 ((
κ+1

)n)2

(n+1)2 (n+2)2
((√

13
)n)3

κn n!
,

G3(n) = 32
((

(−1)
1
6

)n)5 (
7n

)5 ((
κ+1

)n)5

(n+1)5 (n+2)5
((√

13
)n)3

κn
(
n!
)4

we have Pi (n) = Gi (n) for n � 1. With P(n) = P1(n) + P2(n) + P3(n) (see (14))
and Q(n) = G1(n) + G2(n) + G3(n) (see (18)) we get P(n) = Q(n) for n � 1.

6 Construction of R�-extensions for ProdE(K(n,qqqn))

In this section we extend the results of Theorem 5.4 to the case ProdE(K(n,qqqn)). As
a consequence, we will also prove Theorem 3.1.

6.1 Structural Results for Nested �-extensions

In the following let (Fe,σ) be a ��-extension of (F0,σ) with Fe = F0(t1) · · · (te)
with σ(ti ) = αi ti + βi and αi ∈ F

∗
0, βi ∈ F0 for 1 � i � e. We set Fi = F0(t1) · · ·

(ti ) and thus (Fi−1(ti ),σ) is a ��-extension of (Fi−1,σ) for 1 � i � e.
Wewill use the following notations. For fff = ( f1, . . . , fs) and hwewrite fff ∧ h =

( f1, . . . , fs, h) for the concatenation of fff and h. Moreover, the concatenation of fff
and hhh = (h1, . . . , hu) is denoted by fff ∧ hhh = ( f1, . . . , fs, h1, . . . , hu).

Lemma 6.1 Let (Fe,σ) be a ��-extension of (F0,σ) as above. If the polynomials
in fififi ∈ (Fi−1[ti ] \ Fi−1)

si for 1 � i � e and si ∈ N \ {0} are irreducible and shift
co-prime, then M ( f1f1f1 ∧ · · · ∧ fefefe, Fe) = {0s} where s = s1 + · · · + se.

Proof Let v1v1v1 ∈ Z
s1 , . . . ,veveve ∈ Z

se and g ∈ F
∗
e with

σ(g)

g
= fff vvv111111 fff vvv222222 · · · fff vvveeeeee . (39)

Suppose that not all vivivi with 1 � i � e are zero-vectors and let r be maximal such
thatvrvrvr �= 0sr . Thus the right hand side of (39) is inFr and it follows by Proposition 5.2
that g = γ tur+1

r+1 · · · tuee with γ ∈ F
∗
r and ui ∈ Z; if ti is a �-monomial, then ui = 0.

Hence
σ(γ)

γ
= α

−ur+1
r+1 · · · α−ue

e fff vvv111111 · · · fff vvvr−1r−1r−1

r−1r−1r−1 fff
vvvrrr
rrr = h fff vvvrrrrrr

with h = α
−ur+1
r+1 · · · α−ue

e fff vvv111111 · · · fff vvvr−1r−1r−1

r−1r−1r−1 ∈ F
∗
r−1. Since the entries in fff vvvrrrrrr are shift

co-prime and irreducible, conditions (29) and (30) hold for these entries. Hence
Lemma 5.3 is applicable and we get vvvr = 0sr , a contradiction. �
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We can now formulate a generalization of Theorem 5.3 for nested ��-extensions.

Theorem 6.1 Let (Fe,σ) be the ��-extension of (F0,σ) from above. For 1 � i �
e, let fififi = ( fi,1, . . . , fi,si ) ∈ (Fi−1[ti ] \ Fi−1)

si with si ∈ N \ {0} containing irre-
ducible monic polynomials. Then the following statements are equivalent.

1. gcdσ( fi, j , fi,k) = 1 for all 1 � i � e and 1 � j < k � si .
2. There does not exist v1v1v1 ∈ Z

s1 , . . . , veveve ∈ Z
se with v1v1v1 ∧ . . . ∧ veveve �= 000s and g ∈ F

∗
e

such that
σ(g)

g
= fff vvv111111 · · · fff vvveeeeee

holds. That is, M ( f1f1f1 ∧ · · · ∧ fefefe, Fe) = {0s} where s = s1 + · · · + se.
3. One can construct a�-field extension (Fe(z1,1) · · · (z1,s1) · · · (ze,1) · · · (ze,se),σ)

of (Fe,σ) with σ(zi,k) = fi,k zi,k for 1 � i � e and 1 � k � si .
4. One can construct a �-extension (E,σ) of (Fe,σ) with the ring of Laurent

polynomials E = Fe[z1,1, z−1
1,1] · · · [z1,s1 , z−1

1,s1 ] · · · [ze,1, z−1
e,1] · · · [ze,se , z−1

e,se ] and
σ(zi,k) = fi,k zi,k for 1 � i � e and 1 � k � si .

Proof (1) =⇒ (2) follows by Lemma 6.1.
(2) =⇒ (3): We prove the statement by induction on the number of ��-

monomials t1, . . . , te. For e = 0 nothing has to be shown.Nowsuppose that the impli-
cation has been shown for Fe−1, e � 0 and set E = Fe−1(z1,1, . . . , z1,s1) · · · (ze−1,1,

. . . , ze−1,se−1). Suppose that (E(ze,1, . . . , ze,se),σ) is not a�-extension of (E,σ) and
let � be minimal with s� < se such that (E(ze,1, . . . , ze,s� ),σ) is a �-extension of
(E,σ). Then by Theorem 2.1(1) there are a ve,s� ∈ Z \ {0} and an ω ∈ E(ze,1, . . . ,
ze,s j )

∗ with j = � − 1 such that σ(ω) = f
ve,s�
es�

ω holds. By Proposition 5.2, ω =
g zve,1e,1 · · · zve,s je,s j with (ve,1, . . . , ve,s j ) ∈ Z

s j and g ∈ F
∗
e−1. Thus σ(g)

g = f −ve,1
e,1 · · ·

f
−ve,s j
e,s j f

ve,s�
e,s� .

(3) =⇒ (2). We prove the statement by induction on the number of ��-
monomials t1, . . . , te. For the base case e = 0 nothing has to be shown. Now suppose
that the implication has been shown already for e − 1 ��-monomials and set E =
Fe(z1,1, . . . , z1,s1) · · · (ze−1,1, . . . , ze−1,se−1). Suppose that (E(ze,1, . . . , ze,se ),σ) is a
�-extension of (E,σ) and assume on the contrary that there is a g ∈ F

∗
e andveveve ∈ Z

se \
{0se} such that σ(g)

g = fff vvv111111 · · · fff vvve−1e−1e−1

e−1e−1e−1 fff vvveeeeee holds. Let j be maximal with ve, j �= 0 and

define γ := g zzz−v−v−v111
111 · · · zzz−v−v−ve−1e−1e−1

e−1e−1e−1 z−ve,1
e,1 · · · z−ve, j−1

e, j−1 ∈ E(ze,1, . . . , ze, j−1)
∗ where zzz−v−v−viii

iii =
z−vi,1
i,1 · · · z−vi,si

i,si
for 1 � i < e and g ∈ F

∗
e . Then

σ(γ)

γ
= f

ve, j
e, j with ve j �= 0; a con-

tradiction since (E(ze,1, . . . , ze, j ),σ) is a �-extension of (E(ze,1, . . . , ze, j−1),σ) by
Theorem 2.1.

(2) =⇒ (1). We prove the statement by induction on the number of ��-
monomials t1, . . . , te. For e = 0 nothing has to be shown. Now assume that the
implication holds for the first e − 1 ��-monomials. Now suppose that there
are k, � with 1 � k, � � se and k �= � such that gcdσ( fe,k, fe,�) �= 1 holds. Since
gcdσ( fe,k, fe,�) �= 1 we know that they are shift equivalent and because fe,k, fe,� are
monic it follows by Lemma 4.4 that there is a g ∈ F

∗
e with

σ(g)
g fe,k = fe,� and thus
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σ(g)
g = fff vvv111111 · · · fff vvveeeeee holds with vvv1 = · · ·vvve−1 = 0 and vvve = (0, . . . , 0, ve,k, 0, . . . , 0,

ve,�, 0, . . . , 0) ∈ Z
se \ {0se} where ve,k = −1 and ve,� = 1.

(3) =⇒ (4) is obvious and (4) =⇒ (3) follows by [32, Corollary 2.6]. �

6.2 Proof of the Main Result (Theorem 3.1)

Using the structural results for nested ��-extensions from the previous subsection,
we are now in the position to handle the mixed qqq-multibasic case. More precisely,
we will generalize Theorem 5.4 from the rational difference field to the mixed qqq-
multibasic difference field (F,σ) with qqq = (q1, . . . , qe−1). Here we assume that
K = K (κ1, . . . ,κu)(q1, . . . , qe−1) is a rational function field over a field K where
K is strongly σ-computable. Following the notation from the previous subsection,
we set F0 := K and Fi = F0(t1) . . . (ti ) for 1 � i � e. This means that (F0(t1),σ) is
the �-extension of (F0,σ) with σ(t1) = t1 + 1 and (Fi−1(ti ),σ) is the �-extension
of (Fi−1,σ) with σ(ti ) = qi−1 ti for 2 � i � e.

As for the rational case we have to merge difference rings coming from different
constructions. Using Theorem 6.1 instead of Theorem 5.3, Lemma 5.6 generalizes
straightforwardly to Lemma 6.2. Thus the proof is omitted here.

Lemma 6.2 Let (Fe,σ) be the mixed qqq-multi-basic difference field with F0 = K

from above. Further, let (K[y1, y−1
1 ] . . . [yw, y−1

w ],σ) be a �-extension of (K,σ)

with σ(yi )
yi

∈ K
∗ and (Fe[z1,1, z−1

1,1] · · · [z1,s1 , z−1
1,s1 ] · · · [ze,1, z−1

e,1] · · · [ze,se , z−1
e,se ],σ) be

a�-extension of (F0,σ) as given in Theorem 6.1 with item (4). Then (E,σ)withE =
Fe[y1, y−1

1 ] · · · [yw, y−1
w ][z1,1, z−1

1,1] · · · [z1,s1 , z−1
1,s1 ] · · · [ze,1, z−1

e,1] · · · [ze,se , z−1
e,se ] is a

�-extension of (Fe,σ). Furthermore, the A-extension (E[ϑ],σ) of (E,σ) with
σ(ϑ) = ζ ϑ of order λ is an R-extension.

Gluing everything together, we obtain a generalization of Theorem 5.4. Namely,
one obtains an algorithmic construction of an R�-extension in which one can repre-
sent a finite set of hypergeometric, q-hypergeometric, qqq-multibasic hypergeometric
and mixed qqq-multibasic hypergeometric products.

Theorem 6.2 Let (Fe,σ) be a mixed qqq-multibasic difference field extension of
(F0,σ) with F0 = K where K = K (κ1, . . . ,κu)(q1, . . . , qe−1) is a rational func-
tion field, σ(t1) = t1 + 1 and σ(t�) = q�−1 t� for 2 � � � e. Let h1, . . . , hm ∈ F

∗
e .

Then one can define an R�-extension (A,σ) of (K′,σ) with

A = K
′(t1) · · · (te)[ϑ][y1, y−1

1 ] · · · [yw, y−1
w ][z1,1, z−1

1,1] · · · [z1,s1 , z−1
1,s1

] · · · [ze,1, z−1
e,1] · · · [ze,se , z−1

e,se ] (40)

and K
′ = K ′(κ1, . . . ,κu)(q1, . . . , qe−1) where K ′ is an algebraic field extension of

K such that

• σ(ϑ) = ζ ϑ where ζ ∈ K ′ is a λ-th root of unity.
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• σ(y j )

y j
= α j ∈ K

′ \ {0} for 1 � j � w where the α j are not roots of unity;

• σ(zi, j )

zi, j
= fi, j ∈ Fi−1[ti ] \ Fi−1 are monic, irreducible and shift co-prime;

holds with the following property. For 1 � k � m one can define7

gk = rk ϑμk yuk,11 · · · yuk,w1 zvk,1,11,1 · · · zvk,1,s11,s1 zvk,2,12,1 · · · zvk,2,s22,s2 · · · zvk,e,1e,1 · · · zvk,e,see,se (41)

with 0 � μk � λ − 1, uk,i ∈ Z, νk,i, j ∈ Z and rk ∈ F
∗
e such that

σ(gk) = σ(hk) gk .

If K is strongly σ-computable, the components of the theorem can be computed.

Proof Take irreducible monic polynomials B = {p1, . . . , pn} ⊆ F0[t1, t2, . . . , te]
and take γ1, . . . , γm ∈ F

∗
0 such that for each k with 1 � k � m weget dk,1, . . . , dk,n ∈

Z with σ(hk) = γi p
dk,1
1 · · · pdk,nn . Following the proof of Theorem 5.4, we can con-

struct an R�-extension F
′
0(x)[ϑ][y1, y−1

1 ] · · · [yw, y−1
w ] of (F′

0(x),σ) with constant
field F

′
0 = K ′(κ1, . . . ,κu)(q1, . . . , qe−1) where K ′ is an algebraic extension of K

and the automorphism is defined as stated in Theorem 6.2 with the following prop-
erty: we can define ak of the form (35) in this ring with (36).

Set Ii = {
ω ∈ B | ω ∈ K[t1, t2, . . . , ti ] \ K[t1, t2, . . . , ti−1]

}
for 1 � i � e and

define I = {1 � i � e | Ii �= {}}. Then for each i ∈ I there is a partition Pi =
{Ei,1, . . . ,Ei,si } of Ii w.r.t. the shift-equivalence of the automorphism defined for
each ti , i.e., eachEi, j with 1 � j � si and i ∈ I contains precisely the shift equivalent
elements of Pi . Take a representative from each equivalence class Ei, j in Pi and
collect them in Fi := { fi,1, . . . , fi,si }. By construction it follows that property (1)
in Theorem 6.1 holds; here we put all ti with i /∈ I in the ground field. Therefore by
Theorem 6.1 we obtain the �-extension (Fe(z1,1) · · · (z1,s1) · · · (ze,1) · · · (ze,se),σ)

of (Fe,σ) with σ(zi,k) = fi,k zi,k for all i ∈ I and 1 � k � si with si ∈ N \ {0};
for i /∈ I we set si = 0. By Lemma 6.2 and Remark 5.2, (A,σ) with (40) is an
R�-extension of (F′

0(t1) · · · (te),σ). Let i, j with i ∈ I and 1 � j � si . Since each
fi, j is shift equivalent with every element of Ei, j , it follows by Lemma 4.4 that
for all h ∈ Ei, j , there is a rational function 0 �= r ∈ Fi \ Fi−1 with h = σ(r)

r fi, j .
Putting everything together we obtain for each k with 1 � k � m, an 0 �= rk ∈ Fe

and vvvk,i = (vk,i,1, . . . , vk,i,si ) ∈ Z
si with pdk,11 · · · pdk,nn = σ(rk )

rk
fff vvv111111 · · · fff vvveeeeee . Note that

for
bk := rk z

vk,1,1
1,1 · · · zvk,1,s11,s1 zvk,2,12,1 · · · zvk,2,s22,s2 · · · zvk,e,1e,1 · · · zvk,e,see,se ∈ A

we have that σ(bk) = pdk,11 · · · pdk,nn bk . Now let gk ∈ A be as defined in (41). Since
gk = ak bk where ak equals (35) and has the property (36), we conclude that σ(gk) =
σ(hk) gk . The proof of the computational part is the same as that of Theorem 5.4.�

7We remark that this representation is related to the normal form given in [8].
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We are now ready to complete the proof for Theorem 3.1. To link to the notations
used there, we setqqq = (q1, . . . , qe−1) and set further (x, t1, . . . , te−1) = (t1, . . . , te),
in particular we use the shortcut ttt = (t2, . . . , te−1). Suppose we are given the prod-
ucts (11) and that we are given the components as stated in Theorem 6.2. Then we
follow the strategy as in Sect. 5.4.
• Take the K

′-embedding τ : K
′(x, ttt) → S (K′) where τ ( ab ) = 〈ev (

a
b , n

)〉n�0 for
a, b ∈ K

′[x, ttt] is definedby (9). Thenby iterative applicationof part (2) ofLemma2.2
we can construct the K

′-homomorphism τ : A → S (K′) determined by the homo-
morphic extension with

• τ (ϑ) = 〈ζn〉n�0,
• τ (yi ) = 〈αn

i 〉n�0 for 1 � i � w and

• τ (zi, j ) = 〈
n∏

k=�′
i, j

fi, j (k − 1,qqqk−1)〉n�0 with �′
i, j = Z( fi, j ) + 1 for 1 � i � e, 1 �

j � si .

In particular, since (A,σ) is an R�-extension of (K′(x, ttt),σ), it follows by part (3)
of Lemma 2.2 that τ is a K

′-embedding.
• Finally, define for 1 � i � m the product expressions

Gi (n) =ri (n) (ζn)μi (αn
1)

ui,1 · · · (αn
w)ui,w

( n∏

k=�′
1,1

f1,1(k − 1,qqqk−1)
)vi,1,1 · · ·

( n∏

k=�′
1,s1

f1,s1(k − 1,qqqk−1)
)vi,1,s1

. . .

( n∏

k=�′
e,1

fe,1(k − 1,qqqk−1)
)vi,e,1 · · ·

( n∏

k=�′
e,se

fe,se (k − 1,qqqk−1)
)vi,e,se

and define δi = max(�i , �′
1,1, . . . , �

′
e,se , Z(ri )). Then observe that τ (gi ) =

〈G ′
i (n)〉n�0 with (38). Now set Qi (n) := c Gi (n) with c = Pi (δi )

Gi (δi )
∈ K

′. Then as for
the proof of the rational case we conclude that Pi (n) = Qi (n) for all n � δi . This
proves part (1) of Theorem 3.1. Since τ is a K

′-embedding, the sequences

〈
αn
1

〉
n�0, . . . ,

〈
αn

w

〉
n�0,

〈 n∏

k=�′
1,1

f1,1(k − 1,qqqk−1)
〉
n�0, . . . ,

〈 n∏

k=�′
e,se

fe,se(k − 1,qqqk−1)
〉
n�0

are among each other algebraically independent over τ
(
K

′(x)
)[〈

ζn
〉
n�0

]
which

proves property (2) of Theorem 3.1.
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Example 6.1 Let K = K (q1, q2) be the rational function field over the algebraic
number field K = Q(

√−3,
√−13), and consider themixedqqq = (q1, q2)-multibasic

hypergeometric product expression

P(n) =
n∏

k=1

√−13
(
k qk

1+1
)

k2
(
qk+1
1 qk+1

2 +k+1
) +

n∏

k=1

k2
(
k+qk

1 q
k
2

)2

√−3 (k+1)2
+

n∏

k=1

169
(
k qk

1 q
k
2+qk

2+k qk
1+1

)

(
k qk+2

1 +2 qk+2
1 +1

)
k2

. (42)

Now take the mixed qqq-multibasic difference field extension (K(x)(t1)(t2),σ) of
(K,σ) with σ(x) = x + 1, σ(t1) = q1 t1 and σ(t2) = q2 t2. Note that h1(k, qk

1 , q
k
2 ),

h2(k, qk
1 , q

k
2 ) and h3(k, qk

1 , q
k
2 ) with

h1 =
√−13 (x t1+1)

x2 (q1 t1 q2 t2+x+1) , h2 = x2 (x+t1 t2)2√−3 (x+1)2
, h3 = 169 (x t1 t2+t2+x t1+1

(x q2
1 t1+2 q2

1 t2+1) x2
∈ K(x, t1, t2)

are the multiplicands of the above products, respectively. Applying Theorem 6.2
we construct the algebraic number field extension K

′ = Q
(
(−1)

1
2 ,

√
3,

√
13

)
of K

and take the ��-extension (F′,σ) of (K′,σ) with F
′ = K

′(x)(t1)(t2) where σ(x) =
x + 1,σ(t1) = q1 t1 andσ(t2) = q2 t2.On topof thismixedmultibasic differencefield
overK

′ we construct the R�-extension (A,σ)withA = F
′[ϑ] 〈y1〉 〈y2〉 〈z1〉 〈z2〉 〈z3〉

〈z4〉where theR-monomialϑwithσ(ϑ) = (−1)
1
2 ϑ and the�-monomials y1, y2 with

σ(y1) = √
3 y1 and σ(y2) = √

13 y2 are used to scope the content of the polynomi-
als in h1, h2, h3. Furthermore, the �-monomials z1, z2, z3, z4 with σ(z1) = (x +
1) z1, σ(z2) = (

(x + 1) q1 t1 + 1
)
z2, σ(z3) = (q2 t2 + 1) z3, σ(z4) = (q2 q1 t2 t1 +

x + 1) z4 are used to handle themonic polynomials inh1, h2, h3. These�-monomials
are constructed in an iterative fashion as worked out in the proof of Theorem 6.2. In
particular, within this construction we derive

Q = (q2 q1 + 1) ϑ y2 z2
(
q2 q1 t2 t1 + x + 1

)
z21 z4︸ ︷︷ ︸

=:g1

+ ϑ3 z24
(
x + 1

)2
y1

︸ ︷︷ ︸
=:g2

+
(
q1 + 1

) (
2 q21 + 1

)
y42 z3(

(x + 1) q1 t1 + 1
) (

(x + 2) q21 t1 + 1
)
z21︸ ︷︷ ︸

=:g3

such that σ(gi ) = σ(hi ) gi holds for i = 1, 2, 3.
Now take theK

′-embedding τ : K
′(x, ttt) → S (K′)where τ ( ab ) = 〈ev (

a
b , n

)〉n�0

for a, b ∈ K
′[x, ttt] is defined by (9). Then by iterative application of part (2) of

Lemma 2.2 we can construct the K
′-embedding τ : A → S (K′) determined by the

homomorphic continuation of τ (ϑ) = 〈(−1)
1
2 〉n�0, τ (y1) = 〈(√3

)n〉n�0, τ (y2) =
〈(√13

)n〉n�0, τ (z1) = 〈n!〉n�0, τ (z2) = 〈∏n
k=1(k q

k
1 + 1)〉n�0, τ (z3) = 〈∏n

k=1(q
k
2 +

1)〉n�0 and τ (z4) = 〈∏n
k=1(q

k
2 q

k
1 + k)〉n�0. By our constructionwe can conclude that

τ (g1), τ (g2) and τ (g3) equal the sequences produced by the three products in (42),
respectively. In particular, τ (Q) = 〈P(n)〉n�0. Furthermore, if we define
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Q(n) = (q2 q1 + 1)
(
qn+1
2 qn+1

1 + n + 1
)

(
(−1)

1
2
)n (√

13
)n 1

(
n!)2

n∏

k=1

(
k qk1 + 1

) n∏

k=1

1
(
qk2 q

k
1 + k

)

+ 1
(
n + 1

)2
((

(−1)
1
2
)n)3((√3

)n)−1

(
n∏

k=1

(
qk2 q

k
1 + k

)
)2

+
(
q1 + 1

) (
2 q21 + 1

)

(
(n + 1) qn+1

1 + 1
) (

(n + 2) qn+2
1 + 1

)
((√

13
)n)4 1

(
n!)2

n∏

k=1

(
qk2 + 1

)

then we can guarantee that P(n) = Q(n) for all n � 1. The sequences generated by
(√

3
)n

,
(√

13
)n

, n!,
n∏

k=1

(
k qk

1 + 1
)
,

n∏

k=1

(
qk
2 + 1

)
,

n∏

k=1

(
qk
2 q

k
1 + k

)
are algebraically

independent among each other over τ (K′(x, ttt))[〈((−1)
1
2 )n〉n�0] by construction.

7 Conclusion

We extended the earlier work [23, 28] substantially and showed that any expression
in terms of hypergeometric products ProdE(K(n)) can be formulated in an R��-
extension if the original constant fieldK satisfies certain algorithmic properties. This
is in particular the case ifK = K (κ1, . . . ,κu) is a rational function field over an alge-
braic number field K . In addition, we extended this machinery for the class of mixed
qqq-multibasic hypergeometric products. Internally, we rely on Ge’s algorithm [9] that
solves the orbit problem in K and we utilize heavily results from difference ring
theory [10, 27, 30, 32]. This product machinery implemented in Ocansey’s pack-
age NestedProducts in combination with the summation machinery available in
Sigma [25] yields a complete summation toolbox in which nested sums defined over
ProdE(K(n,qnqnqn)) can be represented and simplified using the summation paradigms
of telescoping, creative telescoping and recurrence solving [19, 25].
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