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Abstract

In his pioneering work [1, 2], Michael Karr introduced ⇧⌃-fields which provide a rather general
framework for symbolic summation. He worked out the first algorithmic steps to represent indefinite
nested sums and products as transcendental extensions over a computable ground field K called the field
of constants. Furthermore, he presented an algorithm that solves the parameterized telescoping problem,
and as special cases the telescoping and creative telescoping problems [3] within a given ⇧⌃-field.

Over the recent years, Karr’s ⇧⌃-field approach has been extended to a di↵erence ring approach [4, 5].
In this new framework also algebraic products like ↵n with ↵ being a primitive root of unity can
be tackled. More precisely, a general machinery is obtained in which indefinite nested sums defined
over hypergeometric products can be rephrased in the setting of the so-called R⇧⌃⇤-ring extensions.
Moreover, general algorithms have been developed that solve the parameterized telescoping equations
within such a constructed di↵erence ring.

This machinery implemented within the summation package Sigma [14] works in general if one knows
in advance how the arising hypergeometric products can be rephrased within an R⇧⌃⇤-ring extension.
In particular, restricting to a field K that is given as the quotient field of a unique factorization domain
U, such a construction can be done automatically [6, 4]: given a finite set of hypergeometric products
that evaluate to elements in K, one can construct an R⇧⌃⇤-extension with constant field K in which
the products can be rephrased. This is especially the case, if U forms a polynomial ring over Q or over
Q( ). However, when one tries to extend the constant field to include other number fields, one looses
the unique factorization property inherent in the constant field K.

In a nutshell, in order to obtain a complete summation machinery in which one can represent hy-
pergeometric products defined over K where K is a rational function field over an algebraic number
field, and more generally, in which one can rephrase indefinite nested sums over such hypergeometric
products, we will solve the following missing building block that can be formulated as follows.

Product-representation in R⇧-extensions:
Given a finite number of hypergeometric products that evaluate to our general field K (see above); con-
struct an R⇧-extension (where the constant field K might be extended by algebraic number extensions)
and compute elements in the obtained di↵erence ring such that they represent the given input products.

With the obtained algorithm, we can rephrase, for instance, the hypergeometric product expression
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construction in this summary, but present the output reinterpreted again as hypergeometric products.
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More precisely, we will find the following identity:
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Besides this algorithmic representation within the setting of di↵erence rings, we will emphasize the
following aspects:

1. Based on di↵erence ring theory [7, 8] the produced representation is given in terms of hypergeo-
metric products that are algebraically independent among each other. E.g., the right hand side
of (2) can be given within a Laurent polynomial ring. More precisely, they can be given within
the ring
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extension. However, the third product cannot be handled this way since there is the relation
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In general, obtaining such relations can be non-trivial and one will have to resort to our algorithm
to construct the ring (3) to represent such hypergeometric products.

3. Further, we solve the zero-recognition problem for the class of expressions in terms of hypergeo-
metric products: a polynomial expression in terms of hypergeometric products evaluates to the
zero-sequence (from a certain point on) if and only if the expression is simplified with our algorithm
to the 0 element. This important feature is exploited, e.g., in [8, 9] to solve the zero-recognition
problem for nested sums over such hypergeometric products.

4. Moreover, our produced result produces hypergeometric products where the degrees in the nu-
merators and denominators of the multiplicands have minimal degrees. Restricting to just one
hypergeometric product, this problem has been treated also in [10].

The outline of the poster is as follows. We first begin with a detailed problem specification within
the setting of sequences and the underlying computer algebra formulation in the setting of di↵erence
rings. Then we will work out in detail how one can represent hypergeometric products in the setting
of R⇧-extensions. Here we generalize non-trivially the techniques presented in [6, 4] which are based
on sub-algorithms of [1]. In addition, we utilize Ge’s algorithm [11] (see also [12, 6]) which solves the
orbit problem: given f1, . . . , fd 2 K⇤, his algorithm computes a basis of the Z-module {(z1, . . . , zd) 2
Zd | fz1

1 · · · fzd

d = 1}. Finally, we observe that the presented algorithm can be extended further to the
class of q-hypergeometric, multibasic and mixed hypergeometric products [13, 15] and give some further
comments how this can be accomplished.
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